Spaces:
Sleeping
Sleeping
File size: 2,733 Bytes
6f5c4d3 69f3d39 648fba4 9602bc7 69f3d39 6ef3a8f 69f3d39 9602bc7 abc0ae6 9602bc7 69f3d39 ff917b6 69f3d39 9602bc7 69f3d39 9602bc7 69f3d39 5233ff4 69f3d39 9602bc7 5233ff4 69f3d39 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 |
from transformers import pipeline, SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan
import gradio as gr
import torch
import numpy as np
from datasets import load_dataset, Audio
from transformers import pipeline
import librosa
from openai import OpenAI
# Load ASR model
asr_pipe = pipeline(model="divakaivan/glaswegian-asr")
# Load TTS components
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
tts_model = SpeechT5ForTextToSpeech.from_pretrained("divakaivan/glaswegian_tts")
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
# Load dataset for speaker embedding
dataset = load_dataset("divakaivan/glaswegian_audio")
dataset = dataset.cast_column("audio", Audio(sampling_rate=16000))['train']
def transcribe(audio):
text = asr_pipe(audio)["text"]
return text
def generate_response(text, api_key):
client = OpenAI(api_key=api_key)
response = client.chat.completions.create(
model='gpt-3.5-turbo-0125',
messages=[{"role": "user", "content": text}]
)
return response.choices[0].message.content
def synthesize_speech(text):
inputs = processor(text=text, return_tensors="pt")
speaker_embeddings = create_speaker_embedding(dataset[0]["audio"]["array"])
spectrogram = tts_model.generate_speech(inputs["input_ids"], torch.tensor([speaker_embeddings]))
with torch.no_grad():
speech = vocoder(spectrogram)
speech = (speech.numpy() * 32767).astype(np.int16)
return (16000, speech)
def create_speaker_embedding(waveform):
import os
from speechbrain.inference.speaker import EncoderClassifier
spk_model_name = "speechbrain/spkrec-xvect-voxceleb"
device = "cuda" if torch.cuda.is_available() else "cpu"
speaker_model = EncoderClassifier.from_hparams(
source=spk_model_name,
run_opts={"device": device},
savedir=os.path.join("/tmp", spk_model_name),
)
with torch.no_grad():
speaker_embeddings = speaker_model.encode_batch(torch.tensor(waveform))
speaker_embeddings = torch.nn.functional.normalize(speaker_embeddings, dim=2)
speaker_embeddings = speaker_embeddings.squeeze().cpu().numpy()
return speaker_embeddings
def voice_assistant(audio, api_key):
transcribed_text = transcribe(audio)
response_text = generate_response(transcribed_text, api_key)
speech_audio = synthesize_speech(response_text)
return speech_audio
iface = gr.Interface(
fn=voice_assistant,
inputs=[
gr.Audio(type="filepath"),
gr.Textbox(label="OpenAI API Key", type="password")
],
outputs=gr.Audio(label="Response Speech", type="numpy"),
title="Your Glaswegian Assistant"
)
iface.launch()
|