drewThomasson's picture
Create app.py
577cd8e verified
raw
history blame
99.4 kB
#This will download the booknlp files using my huggingface backup
import download_missing_booknlp_models
# @title Default title text
#this is code that will be used to turn numbers like 1,000 and in a txt file into 1000 go then booknlp doesnt make it weird and then when the numbers are generated it comes out fine
import re
def process_large_numbers_in_txt(file_path):
# Read the contents of the file
with open(file_path, 'r') as file:
content = file.read()
# Regular expression to match numbers with commas
pattern = r'\b\d{1,3}(,\d{3})+\b'
# Remove commas in numerical sequences
modified_content = re.sub(pattern, lambda m: m.group().replace(',', ''), content)
# Write the modified content back to the file
with open(file_path, 'w') as file:
file.write(modified_content)
# Usage example
#file_path = 'test_1.txt' # Replace with your actual file path
#process_large_numbers_in_txt(file_path)
#this code here will remove any blank text rows from the csv file
import pandas as pd
def remove_empty_text_rows(csv_file):
# Read the CSV file
data = pd.read_csv(csv_file)
# Remove rows where the 'Text' column is empty or NaN
data = data[data['Text'].notna() & (data['Text'] != '')]
# Write the modified DataFrame back to the CSV file
data.to_csv(csv_file, index=False)
print(f"Rows with empty 'Text' column have been removed from {csv_file}")
# Example usage
#csv_file = 'path_to_your_csv_file.csv' # Replace with your CSV file path
#remove_empty_text_rows(csv_file)
#this code here will split book.csv file by the custom weird chapter deliminator for amachines to see
import pandas as pd
def process_and_split_csv(file_path, split_string):
def split_text(text, split_string, original_row):
# Split the text at the specified string and find the index of the split
split_index = text.find(split_string)
parts = text.split(split_string)
new_rows = []
start_location = original_row['Start Location']
for index, part in enumerate(parts):
new_row = original_row.copy()
if index == 0:
new_row['Text'] = part
new_row['End Location'] = start_location + split_index
else:
new_row['Text'] = split_string + part
new_row['Start Location'] = start_location + split_index
new_row['End Location'] = start_location + split_index + len(split_string) + len(part)
split_index += len(split_string) + len(part) # Update for the next part
new_rows.append(new_row)
return new_rows
def process_csv(df, split_string):
new_rows = []
for _, row in df.iterrows():
text = row['Text']
if isinstance(text, str) and split_string in text:
new_rows.extend(split_text(text, split_string, row))
else:
new_rows.append(row)
return pd.DataFrame(new_rows)
# Read the CSV file
df = pd.read_csv(file_path)
# Process the DataFrame
new_df = process_csv(df, split_string)
# Write the modified DataFrame back to the CSV file
new_df.to_csv(file_path, index=False)
# Example usage
#file_path = 'Working_files/Book/book.csv'
#split_string = 'NEWCHAPTERABC'
#process_and_split_csv(file_path, split_string)
#this code right here isnt the book grabbing thing but its before to refrence in ordero to create the sepecial chapter labeled book thing with calibre idk some systems cant seem to get it so just in case but the next bit of code after this is the book grabbing code with booknlp
import os
import subprocess
import ebooklib
from ebooklib import epub
from bs4 import BeautifulSoup
import re
import csv
import nltk
import shutil
# Only run the main script if Value is True
def create_chapter_labeled_book(ebook_file_path):
# Function to ensure the existence of a directory
def ensure_directory(directory_path):
if not os.path.exists(directory_path):
os.makedirs(directory_path)
print(f"Created directory: {directory_path}")
ensure_directory('Working_files/Book')
def convert_to_epub(input_path, output_path):
# Convert the ebook to EPUB format using Calibre's ebook-convert
try:
subprocess.run(['ebook-convert', input_path, output_path], check=True)
except subprocess.CalledProcessError as e:
print(f"An error occurred while converting the eBook: {e}")
return False
return True
def save_chapters_as_text(epub_path):
# Create the directory if it doesn't exist
directory = "Working_files/temp_ebook"
#Clean up the text chapter folders by wiping it before creating chapters for selected ebook.
#Lazily done by just deleting the directly and everything in it.
if os.path.exists(directory):
shutil.rmtree(directory)
ensure_directory(directory)
# Open the EPUB file
book = epub.read_epub(epub_path)
previous_chapter_text = ''
previous_filename = ''
chapter_counter = 0
# Iterate through the items in the EPUB file
for item in book.get_items():
if item.get_type() == ebooklib.ITEM_DOCUMENT:
# Use BeautifulSoup to parse HTML content
soup = BeautifulSoup(item.get_content(), 'html.parser')
text = soup.get_text()
# Check if the text is not empty
if text.strip():
if len(text) < 2300 and previous_filename:
# Append text to the previous chapter if it's short
with open(previous_filename, 'a', encoding='utf-8') as file:
file.write('\n' + text)
else:
# Create a new chapter file and increment the counter
previous_filename = os.path.join(directory, f"chapter_{chapter_counter}.txt")
chapter_counter += 1
with open(previous_filename, 'w', encoding='utf-8') as file:
file.write(text)
print(f"Saved chapter: {previous_filename}")
# Example usage
input_ebook = ebook_file_path # Replace with your eBook file path
output_epub = 'Working_files/temp.epub'
if os.path.exists(output_epub):
os.remove(output_epub)
print(f"File {output_epub} has been removed.")
else:
print(f"The file {output_epub} does not exist.")
if convert_to_epub(input_ebook, output_epub):
save_chapters_as_text(output_epub)
# Download the necessary NLTK data (if not already present)
nltk.download('punkt')
"""
def process_chapter_files(folder_path, output_csv):
with open(output_csv, 'w', newline='', encoding='utf-8') as csvfile:
writer = csv.writer(csvfile)
# Write the header row
writer.writerow(['Text', 'Start Location', 'End Location', 'Is Quote', 'Speaker', 'Chapter'])
# Process each chapter file
chapter_files = sorted(os.listdir(folder_path), key=lambda x: int(x.split('_')[1].split('.')[0]))
for filename in chapter_files:
if filename.startswith('chapter_') and filename.endswith('.txt'):
chapter_number = int(filename.split('_')[1].split('.')[0])
file_path = os.path.join(folder_path, filename)
try:
with open(file_path, 'r', encoding='utf-8') as file:
text = file.read()
sentences = nltk.tokenize.sent_tokenize(text)
for sentence in sentences:
start_location = text.find(sentence)
end_location = start_location + len(sentence)
writer.writerow([sentence, start_location, end_location, 'True', 'Narrator', chapter_number])
except Exception as e:
print(f"Error processing file {filename}: {e}")
"""
def process_chapter_files(folder_path, output_csv):
with open(output_csv, 'w', newline='', encoding='utf-8') as csvfile:
writer = csv.writer(csvfile)
# Write the header row
writer.writerow(['Text', 'Start Location', 'End Location', 'Is Quote', 'Speaker', 'Chapter'])
# Process each chapter file
chapter_files = sorted(os.listdir(folder_path), key=lambda x: int(x.split('_')[1].split('.')[0]))
for filename in chapter_files:
if filename.startswith('chapter_') and filename.endswith('.txt'):
chapter_number = int(filename.split('_')[1].split('.')[0])
file_path = os.path.join(folder_path, filename)
try:
with open(file_path, 'r', encoding='utf-8') as file:
text = file.read()
# Insert "NEWCHAPTERABC" at the beginning of each chapter's text
if text:
text = "NEWCHAPTERABC" + text
sentences = nltk.tokenize.sent_tokenize(text)
for sentence in sentences:
start_location = text.find(sentence)
end_location = start_location + len(sentence)
writer.writerow([sentence, start_location, end_location, 'True', 'Narrator', chapter_number])
except Exception as e:
print(f"Error processing file {filename}: {e}")
# Example usage
folder_path = "Working_files/temp_ebook" # Replace with your folder path
output_csv = 'Working_files/Book/Other_book.csv'
process_chapter_files(folder_path, output_csv)
def wipe_folder(folder_path):
# Check if the folder exists
if not os.path.exists(folder_path):
print(f"The folder {folder_path} does not exist.")
return
# Iterate through all files in the folder
for filename in os.listdir(folder_path):
file_path = os.path.join(folder_path, filename)
# Check if it's a file and not a directory
if os.path.isfile(file_path):
try:
os.remove(file_path)
print(f"Removed file: {file_path}")
except Exception as e:
print(f"Failed to remove {file_path}. Reason: {e}")
else:
print(f"Skipping directory: {file_path}")
# Example usage
# folder_to_wipe = 'Working_files/temp_ebook' # Replace with the path to your folder
# wipe_folder(folder_to_wipe)
def sort_key(filename):
"""Extract chapter number for sorting."""
match = re.search(r'chapter_(\d+)\.txt', filename)
return int(match.group(1)) if match else 0
def combine_chapters(input_folder, output_file):
# Create the output folder if it doesn't exist
os.makedirs(os.path.dirname(output_file), exist_ok=True)
# List all txt files and sort them by chapter number
files = [f for f in os.listdir(input_folder) if f.endswith('.txt')]
sorted_files = sorted(files, key=sort_key)
with open(output_file, 'w') as outfile:
for i, filename in enumerate(sorted_files):
with open(os.path.join(input_folder, filename), 'r') as infile:
outfile.write(infile.read())
# Add the marker unless it's the last file
if i < len(sorted_files) - 1:
outfile.write("\nNEWCHAPTERABC\n")
# Paths
input_folder = 'Working_files/temp_ebook'
output_file = 'Working_files/Book/Chapter_Book.txt'
# Combine the chapters
combine_chapters(input_folder, output_file)
ensure_directory('Working_files/Book')
#create_chapter_labeled_book()
#this is the Booknlp book grabber code
import os
import subprocess
import tkinter as tk
from tkinter import filedialog, messagebox
from epub2txt import epub2txt
from booknlp.booknlp import BookNLP
import nltk
import re
nltk.download('averaged_perceptron_tagger')
epub_file_path = ""
chapters = []
ebook_file_path = ""
input_file_is_txt = False
def convert_epub_and_extract_chapters(epub_path):
# Regular expression to match the chapter lines in the output
chapter_pattern = re.compile(r'Detected chapter: \* (.*)')
# List to store the extracted chapter names
chapter_names = []
# Start the conversion process and capture the output
process = subprocess.Popen(['ebook-convert', epub_path, '/dev/null'],
stdout=subprocess.PIPE,
stderr=subprocess.STDOUT,
universal_newlines=True)
# Read the output line by line
for line in iter(process.stdout.readline, ''):
print(line, end='') # You can comment this out if you don't want to see the output
match = chapter_pattern.search(line)
if match:
chapter_names.append(match.group(1))
# Wait for the process to finish
process.stdout.close()
process.wait()
return chapter_names
def calibre_installed():
"""Check if Calibre's ebook-convert tool is available."""
try:
subprocess.run(['ebook-convert', '--version'], stdout=subprocess.PIPE, stderr=subprocess.PIPE)
return True
except FileNotFoundError:
print("""ERROR NO CALIBRE: running epub2txt convert version...
It appears you dont have the calibre commandline tools installed on your,
This will allow you to convert from any ebook file format:
Calibre supports the following input formats: CBZ, CBR, CBC, CHM, EPUB, FB2, HTML, LIT, LRF, MOBI, ODT, PDF, PRC, PDB, PML, RB, RTF, SNB, TCR, TXT.
If you want this feature please follow online instruction for downloading the calibre commandline tool.
For Linux its:
sudo apt update && sudo apt upgrade
sudo apt install calibre
""")
return False
def convert_with_calibre(file_path, output_format="txt"):
"""Convert a file using Calibre's ebook-convert tool."""
output_path = file_path.rsplit('.', 1)[0] + '.' + output_format
subprocess.run(['ebook-convert', file_path, output_path])
return output_path
import os
import subprocess
import sys
def process_file_headless():
# Ask for the file path via command line
while True:
file_path = input("Enter the file path of the ebook: ")
# Check if the file exists
if os.path.isfile(file_path):
# File exists, break out of the loop
break
else:
print("File not found. Please try again.")
ebook_file_path = file_path
input_file_is_txt = file_path.lower().endswith('.txt')
if not os.path.exists(file_path):
print("File not found. Please check the path and try again.")
return
if file_path.lower().endswith(('.cbz', '.cbr', '.cbc', '.chm', '.epub', '.fb2', '.html', '.lit', '.lrf',
'.mobi', '.odt', '.pdf', '.prc', '.pdb', '.pml', '.rb', '.rtf', '.snb', '.tcr')) and calibre_installed():
file_path = convert_with_calibre(file_path)
elif file_path.lower().endswith('.epub') and not calibre_installed():
content = epub2txt(file_path)
if not os.path.exists('Working_files'):
os.makedirs('Working_files')
file_path = os.path.join('Working_files', 'Book.txt')
with open(file_path, 'w', encoding='utf-8') as f:
f.write(content)
elif not file_path.lower().endswith('.txt'):
print("Selected file format is not supported or Calibre is not installed.")
return
# Now process the TXT file with BookNLP
book_id = "Book"
output_directory = os.path.join('Working_files', book_id)
model_params = {
"pipeline": "entity,quote,supersense,event,coref",
"model": "big"
}
# Process large numbers in text file to prevent tokenization errors
process_large_numbers_in_txt(file_path)
booknlp = BookNLP("en", model_params)
if calibre_installed():
create_chapter_labeled_book(file_path)
booknlp.process('Working_files/Book/Chapter_Book.txt', output_directory, book_id)
# Clean up temporary files
if not input_file_is_txt:
os.remove(file_path)
print(f"Deleted file: {file_path} because it's not needed anymore after the ebook conversion to txt")
else:
booknlp.process(file_path, output_directory, book_id)
print("Success, File processed successfully!")
# To run the script from the command line
if __name__ == "__main__":
process_file_headless()
import pandas as pd
def filter_and_correct_quotes(file_path):
with open(file_path, 'r', encoding='utf-8') as file:
lines = file.readlines()
corrected_lines = []
# Filter out lines with mismatched quotes
for line in lines:
if line.count('"') % 2 == 0:
corrected_lines.append(line)
with open(file_path, 'w', encoding='utf-8') as file:
file.writelines(corrected_lines)
print(f"Processed {len(lines)} lines.")
print(f"Removed {len(lines) - len(corrected_lines)} problematic lines.")
print(f"Wrote {len(corrected_lines)} lines back to the file.")
if __name__ == "__main__":
file_path = "Working_files/Book/Book.quotes"
filter_and_correct_quotes(file_path)
import pandas as pd
import re
import glob
import os
def process_files(quotes_file, tokens_file):
skip_rows = []
while True:
try:
df_quotes = pd.read_csv(quotes_file, delimiter="\t", skiprows=skip_rows)
break
except pd.errors.ParserError as e:
msg = str(e)
match = re.search(r'at row (\d+)', msg)
if match:
problematic_row = int(match.group(1))
print(f"Skipping problematic row {problematic_row} in {quotes_file}")
skip_rows.append(problematic_row)
else:
print(f"Error reading {quotes_file}: {e}")
return
df_tokens = pd.read_csv(tokens_file, delimiter="\t", on_bad_lines='skip', quoting=3)
last_end_id = 0
nonquotes_data = []
for index, row in df_quotes.iterrows():
start_id = row['quote_start']
end_id = row['quote_end']
filtered_tokens = df_tokens[(df_tokens['token_ID_within_document'] > last_end_id) &
(df_tokens['token_ID_within_document'] < start_id)]
words_chunk = ' '.join([str(token_row['word']) for index, token_row in filtered_tokens.iterrows()])
words_chunk = words_chunk.replace(" n't", "n't").replace(" n’", "n’").replace("( ", "(").replace(" ,", ",").replace("gon na", "gonna").replace(" n’t", "n’t")
words_chunk = re.sub(r' (?=[^a-zA-Z0-9\s])', '', words_chunk)
if words_chunk:
nonquotes_data.append([words_chunk, last_end_id, start_id, "False", "Narrator"])
last_end_id = end_id
nonquotes_df = pd.DataFrame(nonquotes_data, columns=["Text", "Start Location", "End Location", "Is Quote", "Speaker"])
output_filename = os.path.join(os.path.dirname(quotes_file), "non_quotes.csv")
nonquotes_df.to_csv(output_filename, index=False)
print(f"Saved nonquotes.csv to {output_filename}")
def main():
quotes_files = glob.glob('Working_files/**/*.quotes', recursive=True)
tokens_files = glob.glob('Working_files/**/*.tokens', recursive=True)
for q_file in quotes_files:
base_name = os.path.splitext(os.path.basename(q_file))[0]
matching_token_files = [t_file for t_file in tokens_files if os.path.splitext(os.path.basename(t_file))[0] == base_name]
if matching_token_files:
process_files(q_file, matching_token_files[0])
print("All processing complete!")
if __name__ == "__main__":
main()
import pandas as pd
import re
import glob
import os
import nltk
def process_files(quotes_file, entities_file):
# Load the files
df_quotes = pd.read_csv(quotes_file, delimiter="\t")
df_entities = pd.read_csv(entities_file, delimiter="\t")
character_info = {}
def is_pronoun(word):
tagged_word = nltk.pos_tag([word])
return 'PRP' in tagged_word[0][1] or 'PRP$' in tagged_word[0][1]
def get_gender(pronoun):
male_pronouns = ['he', 'him', 'his']
female_pronouns = ['she', 'her', 'hers']
if pronoun in male_pronouns:
return 'Male'
elif pronoun in female_pronouns:
return 'Female'
return 'Unknown'
# Process the quotes dataframe
for index, row in df_quotes.iterrows():
char_id = row['char_id']
mention = row['mention_phrase']
# Initialize character info if not already present
if char_id not in character_info:
character_info[char_id] = {"names": {}, "pronouns": {}, "quote_count": 0}
# Update names or pronouns based on the mention_phrase
if is_pronoun(mention):
character_info[char_id]["pronouns"].setdefault(mention.lower(), 0)
character_info[char_id]["pronouns"][mention.lower()] += 1
else:
character_info[char_id]["names"].setdefault(mention, 0)
character_info[char_id]["names"][mention] += 1
character_info[char_id]["quote_count"] += 1
# Process the entities dataframe
for index, row in df_entities.iterrows():
coref = row['COREF']
name = row['text']
if coref in character_info:
if is_pronoun(name):
character_info[coref]["pronouns"].setdefault(name.lower(), 0)
character_info[coref]["pronouns"][name.lower()] += 1
else:
character_info[coref]["names"].setdefault(name, 0)
character_info[coref]["names"][name] += 1
# Extract the most likely name and gender for each character
for char_id, info in character_info.items():
most_likely_name = max(info["names"].items(), key=lambda x: x[1])[0] if info["names"] else "Unknown"
most_common_pronoun = max(info["pronouns"].items(), key=lambda x: x[1])[0] if info["pronouns"] else None
gender = get_gender(most_common_pronoun) if most_common_pronoun else 'Unknown'
gender_suffix = ".M" if gender == 'Male' else ".F" if gender == 'Female' else ".?"
info["formatted_speaker"] = f"{char_id}:{most_likely_name}{gender_suffix}"
info["most_likely_name"] = most_likely_name
info["gender"] = gender
# Write the formatted data to quotes.csv
output_filename = os.path.join(os.path.dirname(quotes_file), "quotes.csv")
with open(output_filename, 'w', newline='') as outfile:
fieldnames = ["Text", "Start Location", "End Location", "Is Quote", "Speaker"]
writer = pd.DataFrame(columns=fieldnames)
for index, row in df_quotes.iterrows():
char_id = row['char_id']
if not re.search('[a-zA-Z0-9]', row['quote']):
print(f"Removing row with text: {row['quote']}")
continue
if character_info[char_id]["quote_count"] == 1:
formatted_speaker = "Narrator"
else:
formatted_speaker = character_info[char_id]["formatted_speaker"] if char_id in character_info else "Unknown"
new_row = {"Text": row['quote'], "Start Location": row['quote_start'], "End Location": row['quote_end'], "Is Quote": "True", "Speaker": formatted_speaker}
#turn the new_row into a data frame
new_row_df = pd.DataFrame([new_row])
# Concatenate 'writer' with 'new_row_df'
writer = pd.concat([writer, new_row_df], ignore_index=True)
writer.to_csv(output_filename, index=False)
print(f"Saved quotes.csv to {output_filename}")
def main():
# Use glob to get all .quotes and .entities files within the "Working_files" directory and its subdirectories
quotes_files = glob.glob('Working_files/**/*.quotes', recursive=True)
entities_files = glob.glob('Working_files/**/*.entities', recursive=True)
# Pair and process .quotes and .entities files with matching filenames (excluding the extension)
for q_file in quotes_files:
base_name = os.path.splitext(os.path.basename(q_file))[0]
matching_entities_files = [e_file for e_file in entities_files if os.path.splitext(os.path.basename(e_file))[0] == base_name]
if matching_entities_files:
process_files(q_file, matching_entities_files[0])
print("All processing complete!")
if __name__ == "__main__":
main()
import pandas as pd
import re
import glob
import os
def process_files(quotes_file, tokens_file):
# Load the files
df_quotes = pd.read_csv(quotes_file, delimiter="\t")
df_tokens = pd.read_csv(tokens_file, delimiter="\t", on_bad_lines='skip', quoting=3)
last_end_id = 0 # Initialize the last_end_id to 0
nonquotes_data = [] # List to hold data for nonquotes.csv
# Iterate through the quotes dataframe
for index, row in df_quotes.iterrows():
start_id = row['quote_start']
end_id = row['quote_end']
# Get tokens between the end of the last quote and the start of the current quote
filtered_tokens = df_tokens[(df_tokens['token_ID_within_document'] > last_end_id) &
(df_tokens['token_ID_within_document'] < start_id)]
# Build the word chunk
#words_chunk = ' '.join([token_row['word'] for index, token_row in filtered_tokens.iterrows()])
words_chunk = ' '.join([str(token_row['word']) for index, token_row in filtered_tokens.iterrows()])
words_chunk = words_chunk.replace(" n't", "n't").replace(" n’", "n’").replace(" ’", "’").replace(" ,", ",").replace(" .", ".").replace(" n’t", "n’t")
words_chunk = re.sub(r' (?=[^a-zA-Z0-9\s])', '', words_chunk)
# Append data to nonquotes_data if words_chunk is not empty
if words_chunk:
nonquotes_data.append([words_chunk, last_end_id, start_id, "False", "Narrator"])
last_end_id = end_id # Update the last_end_id to the end_id of the current quote
# Create a DataFrame for non-quote data
nonquotes_df = pd.DataFrame(nonquotes_data, columns=["Text", "Start Location", "End Location", "Is Quote", "Speaker"])
# Write to nonquotes.csv
output_filename = os.path.join(os.path.dirname(quotes_file), "non_quotes.csv")
nonquotes_df.to_csv(output_filename, index=False)
print(f"Saved nonquotes.csv to {output_filename}")
def main():
# Use glob to get all .quotes and .tokens files within the "Working_files" directory and its subdirectories
quotes_files = glob.glob('Working_files/**/*.quotes', recursive=True)
tokens_files = glob.glob('Working_files/**/*.tokens', recursive=True)
# Pair and process .quotes and .tokens files with matching filenames (excluding the extension)
for q_file in quotes_files:
base_name = os.path.splitext(os.path.basename(q_file))[0]
matching_token_files = [t_file for t_file in tokens_files if os.path.splitext(os.path.basename(t_file))[0] == base_name]
if matching_token_files:
process_files(q_file, matching_token_files[0])
print("All processing complete!")
if __name__ == "__main__":
main()
import pandas as pd
import numpy as np
# Read the CSV files
quotes_df = pd.read_csv("Working_files/Book/quotes.csv")
non_quotes_df = pd.read_csv("Working_files/Book/non_quotes.csv")
# Concatenate the dataframes
combined_df = pd.concat([quotes_df, non_quotes_df], ignore_index=True)
# Convert 'None' to NaN
combined_df.replace('None', np.nan, inplace=True)
# Drop rows with NaN in 'Start Location'
combined_df.dropna(subset=['Start Location'], inplace=True)
# Convert the 'Start Location' column to integers
combined_df["Start Location"] = combined_df["Start Location"].astype(int)
# Sort by 'Start Location'
sorted_df = combined_df.sort_values(by="Start Location")
# Save to 'book.csv'
sorted_df.to_csv("Working_files/Book/book.csv", index=False)
#if booknlp came up with nothing then just use the other_book.csv file thank god i still have that code
import os
import tkinter as tk
from tkinter import messagebox
def is_single_line_file(filename):
with open(filename, 'r') as file:
return len(file.readlines()) <= 1
def copy_if_single_line(source_file, destination_file):
if not os.path.isfile(source_file):
return f"The source file '{source_file}' does not exist."
elif is_single_line_file(destination_file):
with open(source_file, 'r') as source:
content = source.read()
with open(destination_file, 'w') as dest:
dest.write(content)
## Popup message
#root = tk.Tk()
#root.withdraw() # Hide the main window
#messagebox.showinfo("Notification", "The 'book.csv' file was found to be empty, so all lines in the book will be said by the narrator.")
#root.destroy()
print(f"Notification:")
print(f"The 'book.csv' file was found to be empty, so all lines in the book will be said by the narrator.")
return f"File '{destination_file}' had only one line or was empty and has been filled with the contents of '{source_file}'."
else:
return f"File '{destination_file}' had more than one line, and no action was taken."
source_file = 'Working_files/Book/Other_book.csv'
destination_file = 'Working_files/Book/book.csv'
result = copy_if_single_line(source_file, destination_file)
print(result)
#this is a clean up script to try to clean up the quotes.csv and non_quotes.csv files of any types formed by booknlp
import pandas as pd
import os
import re
def process_text(text):
# Apply the rule to remove spaces before punctuation and other non-alphanumeric characters
text = re.sub(r' (?=[^a-zA-Z0-9\s])', '', text)
# Replace " n’t" with "n’t"
text = text.replace(" n’t", "n’t").replace("[", "(").replace("]", ")").replace("gon na", "gonna").replace("—————–", "").replace(" n't", "n't")
return text
def process_file(filename):
# Load the file
df = pd.read_csv(filename)
# Check if the "Text" column exists
if "Text" in df.columns:
# Apply the rules to the "Text" column
df['Text'] = df['Text'].apply(lambda x: process_text(str(x)))
# Save the processed data back to the file
df.to_csv(filename, index=False)
print(f"Processed and saved {filename}")
else:
print(f"Column 'Text' not found in {filename}")
def main():
folder_path = "Working_files/Book/"
files = ["non_quotes.csv", "quotes.csv", "book.csv"]
for filename in files:
full_path = os.path.join(folder_path, filename)
if os.path.exists(full_path):
process_file(full_path)
else:
print(f"File {filename} not found in {folder_path}")
if __name__ == "__main__":
main()
#this code here will split the bookcsv file by the calibre chapter deliminators such if calibre is installed
if calibre_installed():
process_and_split_csv("Working_files/Book/book.csv", 'NEWCHAPTERABC')
remove_empty_text_rows("Working_files/Book/book.csv")
#this will wipe the computer of any current audio clips from a previous session
#but itll ask the user first
import os
import tkinter as tk
from tkinter import messagebox
def check_and_wipe_folder(directory_path):
# Check if the directory exists
if not os.path.exists(directory_path):
print(f"The directory {directory_path} does not exist!")
return
# Check for .wav files in the directory
wav_files = [f for f in os.listdir(directory_path) if f.endswith('.wav')]
if wav_files: # If there are .wav files
## Initialize tkinter
#root = tk.Tk()
#root.withdraw() # Hide the main window
## Ask the user if they want to delete the files
#response = messagebox.askyesno("Confirm Deletion", "Audio clips from a previous session have been found. Do you want to wipe them?")
#root.destroy() # Destroy the tkinter instance
#response = input("Audio clips from a previous session have been found. Do you want to wipe them? (yes/no): ").strip().lower()
response = "yes"
if response == 'yes': # If the user types 'yes'
# Iterate through files and delete them
for filename in wav_files:
file_path = os.path.join(directory_path, filename)
try:
os.remove(file_path)
print(f"Deleted: {file_path}")
except Exception as e:
print(f"Failed to delete {file_path}. Reason: {e}")
else:
print("Wipe operation cancelled by the user.")
else:
print("No audio clips from a previous session were found.")
# Usage
check_and_wipe_folder("Working_files/generated_audio_clips/")
from TTS.api import TTS
import tkinter as tk
from tkinter import ttk, scrolledtext, messagebox, simpledialog, filedialog
import threading
import pandas as pd
import random
import os
import time
import os
import pandas as pd
import random
import shutil
import torch
import torchaudio
import time
import pygame
import nltk
from nltk.tokenize import sent_tokenize
from TTS.tts.configs.xtts_config import XttsConfig
from TTS.tts.models.xtts import Xtts
nltk.download('punkt')
# Ensure that nltk punkt is downloaded
nltk.download('punkt', quiet=True)
demo_text = "Imagine a world where endless possibilities await around every corner."
# Load the CSV data
csv_file="Working_files/Book/book.csv"
data = pd.read_csv(csv_file)
#voice actors folder
voice_actors_folder ="tortoise/voices/"
# Get the list of voice actors
voice_actors = [va for va in os.listdir(voice_actors_folder) if va != "cond_latent_example"]
male_voice_actors = [va for va in voice_actors if va.endswith(".M")]
female_voice_actors = [va for va in voice_actors if va.endswith(".F")]
SILENCE_DURATION_MS = 750
# Dictionary to hold each character's selected language
character_languages = {}
models = TTS().list_models()
#selected_tts_model = 'tts_models/multilingual/multi-dataset/xtts_v2'
#I have to do this right now cause they made a weird change to coqui idk super weird the list models isnt working right now
#so this will chekc if its a list isk man and if not then the bug is still there and itll apply the fix
if isinstance(models, list):
print("good it's a list I can apply normal code for model list")
selected_tts_model = models[0]
else:
tts_manager = TTS().list_models()
all_models = tts_manager.list_models()
models = all_models
selected_tts_model = models[0]
# Map for speaker to voice actor
speaker_voice_map = {}
CHAPTER_KEYWORD = "CHAPTER"
multi_voice_model1 ="tts_models/en/vctk/vits"
multi_voice_model2 ="tts_models/en/vctk/fast_pitch"
multi_voice_model3 ="tts_models/ca/custom/vits"
#multi_voice_model_voice_list1 =speakers_list = TTS(multi_voice_model1).speakers
#multi_voice_model_voice_list2 =speakers_list = TTS(multi_voice_model2).speakers
#multi_voice_model_voice_list3 =speakers_list = TTS(multi_voice_model3).speakers
multi_voice_model_voice_list1 = []
multi_voice_model_voice_list2 = []
multi_voice_model_voice_list3 = []
# Dictionary to hold the comboboxes references
voice_comboboxes = {}
fast_voice_clone_models = [model for model in models if "multi-dataset" not in model]
# Creating a dictionary with specific values for the defined models
fast_voice_clone_models_dict = {
model: "p363" if model == multi_voice_model1 else
"VCTK_p226" if model == multi_voice_model2 else
"pep" if model == multi_voice_model3 else
None
for model in fast_voice_clone_models
}
def on_silence_duration_change(*args):
"""
Update the SILENCE_DURATION_MS based on the entry value.
"""
global SILENCE_DURATION_MS
try:
new_duration = int(silence_duration_var.get())
if new_duration >= 0:
SILENCE_DURATION_MS = new_duration
print(f"SILENCE_DURATION_MS changed to: {SILENCE_DURATION_MS}")
else:
raise ValueError
except ValueError:
messagebox.showerror("Invalid Input", "Please enter a valid non-negative integer.")
def validate_integer(P):
"""
Validate if the entry is an integer.
"""
if P.isdigit() or P == "":
return True
else:
messagebox.showerror("Invalid Input", "Please enter a valid integer.")
return False
def update_silence_duration():
"""
Update the SILENCE_DURATION_MS based on the entry value.
"""
global SILENCE_DURATION_MS
try:
SILENCE_DURATION_MS = int(silence_duration_var.get())
except ValueError:
messagebox.showerror("Invalid Input", "Please enter a valid integer.")
def add_languages_to_csv():
df = pd.read_csv('Working_files/Book/book.csv') # Make sure to use your actual CSV file path
if 'language' not in df.columns:
# Map the 'Speaker' column to the 'language' column using the character_languages dictionary
# The get method returns 'en' as a default value if the speaker is not found in the dictionary
df['language'] = df['Speaker'].apply(lambda speaker: character_languages.get(speaker, 'en'))
df.to_csv('Working_files/Book/book.csv', index=False) # Save the changes back to the CSV file
print("Added language data to the CSV file.")
def add_voice_actors_to_csv():
df = pd.read_csv(csv_file)
if 'voice_actor' not in df.columns:
df['voice_actor'] = df['Speaker'].map(speaker_voice_map)
df.to_csv(csv_file, index=False)
print(f"Added voice actor data to {csv_file}")
def get_random_voice_for_speaker(speaker):
selected_voice_actors = voice_actors # default to all voice actors
if speaker.endswith(".M") and male_voice_actors:
selected_voice_actors = male_voice_actors
elif speaker.endswith(".F") and female_voice_actors:
selected_voice_actors = female_voice_actors
if not selected_voice_actors: # If list is empty, default to all voice actors
selected_voice_actors = voice_actors
return random.choice(selected_voice_actors)
def get_random_voice_for_speaker_fast(speaker):
selected_voice_actors = voice_actors # default to all voice actors
male_voice_actors = {"p226", "p228","p229","p230","p231","p232","p233","p234","p236","p238","p239","p241","p251","p252","p253","p254","p255","p256","p258","p262","p264","p265","p266","p267","p269","p272","p279","p281","p282","p285","p286","p287","p292","p298","p299","p301","p302","p307","p312","p313","p317","p318","p326","p340"}
female_voice_actors = {"p225","p227","p237","p240","p243","p244","p245","p246","p247","p248","p249","p250","p257","p259","p260","p261","p263","p268","p270","p271","p273","p274","p275","p276","p277","p280","p283","p284","p288","p293","p294","p295","p297","p300","p303","p304","p305","p306","p308","p310","p311","p314","p316","p323","p329","p341","p343","p345","p347","p351","p360","p361","p362","p363","p364","p374"}
if speaker.endswith(".M") and male_voice_actors:
selected_voice_actors = male_voice_actors
elif speaker.endswith(".F") and female_voice_actors:
selected_voice_actors = female_voice_actors
elif speaker.endswith(".?") and female_voice_actors:
selected_voice_actors = male_voice_actors.union(female_voice_actors)
if not selected_voice_actors: # If list is empty, default to all voice actors
selected_voice_actors = male_voice_actors.union(female_voice_actors)
# Convert the set to a list before using random.choice
return random.choice(list(selected_voice_actors))
def ensure_output_folder():
if not os.path.exists("Working_files/generated_audio_clips"):
os.mkdir("Working_files/generated_audio_clips")
def ensure_temp_folder():
if not os.path.exists("Working_files/temp"):
os.mkdir("Working_files/temp")
import random
import time
def select_voices():
global speaker_voice_map
random.seed(int(time.time()))
ensure_output_folder()
total_rows = len(data) # Assuming 'data' contains your dataset with a 'Speaker' column
# Assign initial random voices
speaker_voice_map = {speaker: get_random_voice_for_speaker(speaker) for speaker in data['Speaker'].unique()}
# Function to display current voice selections and offer changes
def review_and_modify_speaker_voices():
while True:
# Display current selections
print("\nCurrent voice selections:")
for index, (speaker, voice) in enumerate(speaker_voice_map.items(), start=1):
print(f"{index}. {speaker}: {voice}")
# Ask if user wants to change any selection
#change = input("Would you like to change any voice assignments? (yes/no): ").lower()
change = "no"
if change != 'yes':
break
# Get user input for which speaker to change
try:
selection = int(input("Enter the number of the speaker to change the voice for: ")) - 1
if selection < 0 or selection >= len(speaker_voice_map):
raise ValueError("Selection out of range.")
selected_speaker = list(speaker_voice_map.keys())[selection]
except ValueError as e:
print(f"Invalid input: {e}")
continue
# Display available voices and allow user to choose
print(f"Available voices for {selected_speaker}:")
available_voices = [get_random_voice_for_speaker(selected_speaker) for _ in range(5)] # Assuming you can call this multiple times to get different options
for idx, voice in enumerate(available_voices, start=1):
print(f"{idx}. {voice}")
try:
new_voice_selection = int(input("Select the new voice by number: ")) - 1
if new_voice_selection < 0 or new_voice_selection >= len(available_voices):
raise ValueError("Selection out of range.")
# Update the speaker's voice in the map
speaker_voice_map[selected_speaker] = available_voices[new_voice_selection]
print(f"Voice for {selected_speaker} changed to {available_voices[new_voice_selection]}")
except ValueError as e:
print(f"Invalid input: {e}")
review_and_modify_speaker_voices()
print("Final voice assignments have been set.")
def select_voices_fast():
random.seed(int(time.time()))
ensure_output_folder()
total_rows = len(data)
for speaker in data['Speaker'].unique():
random_voice = get_random_voice_for_speaker_fast(speaker)
speaker_voice_map[speaker] = random_voice
for speaker, voice in speaker_voice_map.items():
print(f"Selected voice for {speaker}: {voice}")
# Update the comboboxes if they exist
if speaker in voice_comboboxes:
random_voice = get_random_voice_for_speaker_fast(speaker)
voice_comboboxes[speaker].set(random_voice)
print("Voices have been selected randomly.")
# Pre-select the voices before starting the GUI
select_voices()
## Main application window
#root = tk.Tk()
#root.title("coqui TTS GUI")
#root.geometry("1200x800")
#if calibre_installed():
# chapter_delimiter_var = tk.StringVar(value="NEWCHAPTERABC")
#else:
# chapter_delimiter_var = tk.StringVar(value="CHAPTER")
# Assume calibre_installed is a function that returns True if Calibre is installed, otherwise False
class Delimiter:
def __init__(self, value):
self._value = value
self._callbacks = []
def get(self):
return self._value
def set(self, new_value):
self._value = new_value
self._run_callbacks()
def _run_callbacks(self):
for callback in self._callbacks:
callback()
def trace_add(self, mode, callback):
if mode == "write":
self._callbacks.append(callback)
def update_chapter_keyword():
print("Chapter delimiter updated to:", chapter_delimiter_var.get())
if calibre_installed():
chapter_delimiter_var = Delimiter("NEWCHAPTERABC")
else:
chapter_delimiter_var = Delimiter("CHAPTER")
# Initialize the mixer module
try:
pygame.mixer.init()
print("mixer modual initialized successfully.")
except pygame.error:
print("mixer modual initialization failed")
print(pygame.error)
# This function is called when a voice actor is selected from the dropdown
def update_voice_actor(speaker):
selected_voice_actor = voice_comboboxes[speaker].get()
speaker_voice_map[speaker] = selected_voice_actor
print(f"Updated voice for {speaker}: {selected_voice_actor}")
# Get a random reference file for the selected voice actor
reference_files = list_reference_files(selected_voice_actor)
if reference_files: # Check if there are any reference files
random_file = random.choice(reference_files)
try:
# Stop any currently playing music or sound
pygame.mixer.music.stop()
pygame.mixer.stop()
if random_file.endswith('.mp3'):
# Use the music module for mp3 files
pygame.mixer.music.load(random_file)
pygame.mixer.music.play()
else:
# Use the Sound class for wav files
sound = pygame.mixer.Sound(random_file)
sound.play()
except Exception as e:
print(f"Could not play the audio file: {e}")
# Function to split long strings into parts
def split_long_sentence(sentence, max_length=230, max_pauses=8):
"""
Splits a sentence into parts based on length or number of pauses without recursion.
:param sentence: The sentence to split.
:param max_length: Maximum allowed length of a sentence.
:param max_pauses: Maximum allowed number of pauses in a sentence.
:return: A list of sentence parts that meet the criteria.
"""
parts = []
while len(sentence) > max_length or sentence.count(',') + sentence.count(';') + sentence.count('.') > max_pauses:
possible_splits = [i for i, char in enumerate(sentence) if char in ',;.' and i < max_length]
if possible_splits:
# Find the best place to split the sentence, preferring the last possible split to keep parts longer
split_at = possible_splits[-1] + 1
else:
# If no punctuation to split on within max_length, split at max_length
split_at = max_length
# Split the sentence and add the first part to the list
parts.append(sentence[:split_at].strip())
sentence = sentence[split_at:].strip()
# Add the remaining part of the sentence
parts.append(sentence)
return parts
def combine_wav_files(input_directory, output_directory, file_name):
# Get a list of all .wav files in the specified input directory
input_file_paths = [os.path.join(input_directory, f) for f in os.listdir(input_directory) if f.endswith(".wav")]
# Sort the file paths to ensure numerical order
input_file_paths.sort(key=lambda f: int(''.join(filter(str.isdigit, f))))
# Create an empty list to store the loaded audio tensors
audio_tensors = []
# Iterate through the sorted input file paths and load each audio file
for input_file_path in input_file_paths:
waveform, sample_rate = torchaudio.load(input_file_path)
audio_tensors.append(waveform)
# Concatenate the audio tensors along the time axis (dimension 1)
combined_audio = torch.cat(audio_tensors, dim=1)
# Ensure that the output directory exists, create it if necessary
os.makedirs(output_directory, exist_ok=True)
# Specify the output file path
output_file_path = os.path.join(output_directory, file_name)
# Save the combined audio to the output file path
torchaudio.save(output_file_path, combined_audio, sample_rate)
print(f"Combined audio saved to {output_file_path}")
def wipe_folder(directory_path):
# Ensure the directory exists
if not os.path.exists(directory_path):
print(f"The directory {directory_path} does not exist!")
return
# Iterate through files in the directory
for filename in os.listdir(directory_path):
file_path = os.path.join(directory_path, filename)
# Check if it's a regular file (not a subdirectory)
if os.path.isfile(file_path):
try:
os.remove(file_path)
print(f"Deleted: {file_path}")
except Exception as e:
print(f"Failed to delete {file_path}. Reason: {e}")
# List of available TTS models
tts_models = [
#'tts_models/multilingual/multi-dataset/xtts_v2',
# Add all other models here...
]
tts_models = TTS().list_models()
#This is another coqui bug fix i have to apply for the bug idk why but nwo there this lol it started in coqui V0.22.0
#this will make the models list actually work tho
if isinstance(tts_models, list):
print("good it's a list I can apply normal code for model list")
selected_tts_model = models[0]
else:
tts_manager = TTS().list_models()
all_models = tts_manager.list_models()
tts_models = all_models
# Function to update the selected TTS model
def update_tts_model(event):
global selected_tts_model
selected_tts_model = tts_model_combobox.get()
print(f"Selected TTS model: {selected_tts_model}")
multilingual_tts_models = [model for model in tts_models if "multi-dataset" in model]
multilingual_tts_models.append('StyleTTS2')
# modelse to be removed because i found that they are multi speaker and not single speaker
models_to_remove = [multi_voice_model1, multi_voice_model2, multi_voice_model3]
# List comprehension to remove the unwatned models
multilingual_tts_models = [model for model in multilingual_tts_models if model not in models_to_remove]
# Declare the button as global to access it in other functions
global select_voices_button
def update_voice_comboboxes():
global multi_voice_model_voice_list1
global multi_voice_model_voice_list2
global multi_voice_model_voice_list3
global voice_actors
global female_voice_actors
global male_voice_actors
#updating the values of the avalible voice actors too
voice_actors = [va for va in os.listdir(voice_actors_folder) if va != "cond_latent_example"]
male_voice_actors = [va for va in voice_actors if va.endswith(".M")]
female_voice_actors = [va for va in voice_actors if va.endswith(".F")]
# your code snippet to include single voice models
filtered_tts_models = [model for model in tts_models if "multi-dataset" not in model]
if not multi_voice_model_voice_list1: # This is True if the list is empty
print(f"{multi_voice_model_voice_list1} is empty populating it...")
multi_voice_model_voice_list1 = TTS(multi_voice_model1).speakers
if not multi_voice_model_voice_list2: # This is True if the list is empty
print(f"{multi_voice_model_voice_list2} is empty populating it...")
multi_voice_model_voice_list2 = TTS(multi_voice_model2).speakers
if not multi_voice_model_voice_list3: # This is True if the list is empty
print(f"{multi_voice_model_voice_list3} is empty populating it...")
multi_voice_model_voice_list3 = TTS(multi_voice_model3).speakers
combined_values = voice_actors + filtered_tts_models
combined_values += multi_voice_model_voice_list1 + multi_voice_model_voice_list2 + multi_voice_model_voice_list3
#this will remove unwatned models from the model list, thats cause these three are multi-speaker so im already including them as their voices
combined_values.remove(multi_voice_model1)
combined_values.remove(multi_voice_model2)
combined_values.remove(multi_voice_model3)
# Now update each combobox with the new combined_values
for speaker, combobox in voice_comboboxes.items():
combobox['values'] = combined_values
combobox.set(speaker_voice_map[speaker]) # Reset to the currently selected voice actor
longest_string_length = max((len(str(value)) for value in combobox['values']), default=0)
combobox.config(width=longest_string_length)
# Filter models that are not 'multi-dataset'
filtered_tts_models = [model for model in tts_models if "multi-dataset" not in model]
# Extend the model list with filtered models
multilingual_tts_models.extend(filtered_tts_models)
# Set default value if needed
#tts_model_combobox.set(selected_tts_model)
## Create a frame for the checkboxes
#checkbox_frame = ttk.Frame(root)
#checkbox_frame.pack(fill='x', pady=10)
# Call this function once initially to set the correct values from the start
update_voice_comboboxes()
def create_folder_if_not_exists(folder_path):
if not os.path.exists(folder_path):
os.makedirs(folder_path)
print(f"Folder '{folder_path}' created successfully.")
else:
print(f"Folder '{folder_path}' already exists.")
#i want to gigv ethis the voice actor name and have it turn that into the full directory of the voice actor location, and then use that to grab all the files inside of that voice actoers folder
def list_reference_files(voice_actor):
global multi_voice_model_voice_list1
global multi_voice_model_voice_list2
global multi_voice_model_voice_list3
if voice_actor in multi_voice_model_voice_list1:
create_folder_if_not_exists(f"tortoise/_model_demo_voices/{multi_voice_model1}/{voice_actor}")
reference_files = [os.path.join(f"tortoise/_model_demo_voices/{multi_voice_model1}/{voice_actor}", file) for file in os.listdir(f"tortoise/_model_demo_voices/{multi_voice_model1}/{voice_actor}") if file.endswith((".wav", ".mp3"))]
if len(reference_files)==0:
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
fast_tts = TTS(multi_voice_model1, progress_bar=True).to(device)
fast_tts.tts_to_file(text=demo_text , file_path=f"tortoise/_model_demo_voices/{multi_voice_model1}/{voice_actor}/demo.wav", speaker = voice_actor)
reference_files = [os.path.join(f"tortoise/_model_demo_voices/{multi_voice_model1}/{voice_actor}", file) for file in os.listdir(f"tortoise/_model_demo_voices/{multi_voice_model1}/{voice_actor}") if file.endswith((".wav", ".mp3"))]
return reference_files
else:
return reference_files
elif voice_actor in multi_voice_model_voice_list2:
create_folder_if_not_exists(f"tortoise/_model_demo_voices/{multi_voice_model2}/{voice_actor}")
reference_files = [os.path.join(f"tortoise/_model_demo_voices/{multi_voice_model2}/{voice_actor}", file) for file in os.listdir(f"tortoise/_model_demo_voices/{multi_voice_model2}/{voice_actor}") if file.endswith((".wav", ".mp3"))]
if len(reference_files)==0:
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
fast_tts = TTS(multi_voice_model2, progress_bar=True).to("cpu")
fast_tts.tts_to_file(text=demo_text , file_path=f"tortoise/_model_demo_voices/{multi_voice_model2}/{voice_actor}/demo.wav", speaker = voice_actor)
reference_files = [os.path.join(f"tortoise/_model_demo_voices/{multi_voice_model2}/{voice_actor}", file) for file in os.listdir(f"tortoise/_model_demo_voices/{multi_voice_model2}/{voice_actor}") if file.endswith((".wav", ".mp3"))]
return reference_files
else:
return reference_files
elif voice_actor in multi_voice_model_voice_list3:
create_folder_if_not_exists(f"tortoise/_model_demo_voices/{multi_voice_model3}/{voice_actor}")
reference_files = [os.path.join(f"tortoise/_model_demo_voices/{multi_voice_model3}/{voice_actor}", file) for file in os.listdir(f"tortoise/_model_demo_voices/{multi_voice_model3}/{voice_actor}") if file.endswith((".wav", ".mp3"))]
if len(reference_files)==0:
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
fast_tts = TTS(multi_voice_model3, progress_bar=True).to(device)
fast_tts.tts_to_file(text=demo_text , file_path=f"tortoise/_model_demo_voices/{multi_voice_model3}/{voice_actor}/demo.wav", speaker = voice_actor)
reference_files = [os.path.join(f"tortoise/_model_demo_voices/{multi_voice_model3}/{voice_actor}", file) for file in os.listdir(f"tortoise/_model_demo_voices/{multi_voice_model3}/{voice_actor}") if file.endswith((".wav", ".mp3"))]
return reference_files
else:
return reference_files
elif "tts_models" in voice_actor:
create_folder_if_not_exists("tortoise/_model_demo_voices")
create_folder_if_not_exists(f"tortoise/_model_demo_voices/{voice_actor}")
reference_files = [os.path.join(f"tortoise/_model_demo_voices/{voice_actor}", file) for file in os.listdir(f"tortoise/_model_demo_voices/{voice_actor}") if file.endswith((".wav", ".mp3"))]
if len(reference_files)==0:
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
fast_tts = TTS(voice_actor, progress_bar=True).to(device)
fast_tts.tts_to_file(text=demo_text , file_path=f"tortoise/_model_demo_voices/{voice_actor}/demo.wav")
reference_files = [os.path.join(f"tortoise/_model_demo_voices/{voice_actor}", file) for file in os.listdir(f"tortoise/_model_demo_voices/{voice_actor}") if file.endswith((".wav", ".mp3"))]
return reference_files
else:
return reference_files
single_voice_actor_folder = f"{voice_actors_folder}{voice_actor}/"
# List all .wav and .mp3 files in the folder
reference_files = [os.path.join(single_voice_actor_folder, file) for file in os.listdir(single_voice_actor_folder) if file.endswith((".wav", ".mp3"))]
return reference_files
# List of language codes and their display names
languages = {
'English': 'en', 'Spanish': 'es', 'French': 'fr', 'German': 'de',
'Italian': 'it', 'Portuguese': 'pt', 'Polish': 'pl', 'Turkish': 'tr',
'Russian': 'ru', 'Dutch': 'nl', 'Czech': 'cs', 'Arabic': 'ar',
'Chinese': 'zh-cn', 'Japanese': 'ja', 'Hungarian': 'hu', 'Korean': 'ko'
}
# Variable to hold the current language selection, default to English
current_language = 'en'
current_model =""
tts = None
STTS = None
def generate_file_ids(csv_file, chapter_delimiter):
data = pd.read_csv(csv_file)
if 'audio_id' not in data.columns:
data['audio_id'] = [''] * len(data)
chapter_num = 0
for index, row in data.iterrows():
text = row['Text'] # Adjust to the correct column name, e.g., 'Text' if it's uppercase in the CSV
print(f"{text}")
if chapter_delimiter in text: # Ensure both are uppercase for case-insensitive matching/edit: nah
chapter_num = chapter_num +1
data.at[index, 'audio_id'] = f"audio_{index}_{chapter_num}"
data.to_csv(csv_file, index=False)
print(f"'audio_id' column has been updated in {csv_file}")
#delim = chapter_delimiter_var.get()
generate_file_ids(csv_file, chapter_delimiter_var.get())
#function to generate audio for fine tuned speakers in xtts
import os
import torch
import torchaudio
from TTS.tts.configs.xtts_config import XttsConfig
from TTS.tts.models.xtts import Xtts
import time
import sys
from styletts2 import tts as stts
# Function to install package using pip
def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])
def fineTune_audio_generate(text, file_path, speaker_wav, language, voice_actor):
global current_model
global tts
start_time = time.time() # Record the start time
# Get device
device = "cuda" if torch.cuda.is_available() else "cpu"
# Add here the xtts_config path
CONFIG_PATH = f"tortoise/voices/{voice_actor}/model/config.json"
# Add here the vocab file that you have used to train the model
TOKENIZER_PATH = f"tortoise/voices/{voice_actor}/model/vocab.json_"
# Add here the checkpoint that you want to do inference with
XTTS_CHECKPOINT = f"tortoise/voices/{voice_actor}/model/model.pth"
# Add here the speaker reference
SPEAKER_REFERENCE = speaker_wav
# output wav path
OUTPUT_WAV_PATH = file_path
if current_model != voice_actor:
print(f"found fine tuned for voice actor: {voice_actor}: loading custom model...")
config = XttsConfig()
config.load_json(CONFIG_PATH)
if 'tts' not in locals():
tts = Xtts.init_from_config(config)
tts.load_checkpoint(config, checkpoint_path=XTTS_CHECKPOINT, vocab_path=TOKENIZER_PATH, use_deepspeed=False)
#make sure it runs on cpu or cuda depending on whats avalible on the machine
if device == "cuda":
tts.cuda()
if device == "cpu":
tts.cpu()
current_model = voice_actor
else:
print(f"found fine tuned model for voice actor: {voice_actor} but {voice_actor} model is already loaded")
print("Computing speaker latents...")
gpt_cond_latent, speaker_embedding = tts.get_conditioning_latents(audio_path=[SPEAKER_REFERENCE])
print("Inference...")
out = tts.inference(
text,
language,
gpt_cond_latent,
speaker_embedding,
temperature=0.7, # Add custom parameters here
)
torchaudio.save(OUTPUT_WAV_PATH, torch.tensor(out["wav"]).unsqueeze(0), 24000)
end_time = time.time() # Record the end time
elapsed_time = end_time - start_time
print(f"Time taken for execution: {elapsed_time:.2f} seconds")
def select_tts_model():
models = TTS().list_models() # Fetches all available TTS models
additional_models = ["StyleTTS2"] # Manually add any special or last-minute models here
all_models = models + additional_models # Combine lists
current_model = all_models[0] # Default to the first model in the combined list
while True:
print(f"The TTS model currently selected is {current_model}.")
#response = input("Would you like to keep this model? (yes/no): ").strip().lower()
response = "yes"
if response == 'yes':
return current_model
elif response == 'no':
print("Available models:")
for model in all_models:
print(model)
while True:
selected_model = input("Please type the name of one of the above models: ").strip()
if selected_model in all_models:
current_model = selected_model
break
else:
print("Invalid model. Please select a model from the list.")
else:
print("Please answer 'yes' or 'no'.")
#this code will have the user add a fine tuned xtts modela and also be able to clone a voice in the terminal without a gui
import os
import shutil
from tkinter import filedialog
def clone_new_voice():
while True:
#confirm = input("Do you want to clone a new voice? (yes/no): ").lower()
confirm = "no"
if confirm == 'yes':
voice_actor_name = input("Enter the name of the new voice actor: ")
voice_actor_gender = input("Enter the gender of the new voice actor (M/F/?): ")
new_voice_path = f"tortoise/voices/{voice_actor_name}.{voice_actor_gender}"
if not os.path.exists(new_voice_path):
os.makedirs(new_voice_path)
print(f"New directory created at: {new_voice_path}")
print("Please enter the path to the voice sample file to copy:")
sample_file = input("Enter file path: ")
if os.path.exists(sample_file):
shutil.copy(sample_file, new_voice_path)
print("Sample file copied successfully.")
else:
print("The file does not exist. Please check the path and try again.")
else:
print("Voice actor folder already exists.")
repeat = input("Do you want to clone another new voice? (yes/no): ").lower()
if repeat != 'yes':
break
elif confirm == 'no':
break
else:
print("Please answer 'yes' or 'no'.")
def add_fine_tuned_model():
while True:
#confirm = input("Do you want to add a fine-tuned XTTS model to a voice actor? (yes/no): ").lower()
confirm = "no"
if confirm == 'yes':
base_directory = "tortoise/voices/"
folders = [folder for folder in os.listdir(base_directory) if os.path.isdir(os.path.join(base_directory, folder))]
print("Select a voice actor to add a fine-tuned model to:")
for index, folder in enumerate(folders):
print(f"{index}: {folder}")
selected_index = int(input("Enter the number corresponding to the voice actor: "))
selected_folder = folders[selected_index]
model_path = os.path.join(base_directory, selected_folder, "model")
if not os.path.exists(model_path):
os.makedirs(model_path)
print("Please enter the path to the folder containing fine-tuned XTTS model files to copy from:")
source_folder = input("Enter folder path: ")
if os.path.isdir(source_folder):
for file in os.listdir(source_folder):
source_file = os.path.join(source_folder, file)
destination_file = os.path.join(model_path, file)
shutil.copy2(source_file, destination_file)
print(f"Files copied successfully to {model_path}")
else:
print("The specified directory does not exist. Please check the path and try again.")
repeat = input("Do you want to add another fine-tuned model? (yes/no): ").lower()
if repeat != 'yes':
break
elif confirm == 'no':
break
else:
print("Please answer 'yes' or 'no'.")
def ask_if_user_wants_to_add_fine_tuned_xtts_model_or_clone_a_voice():
while True:
print("\n1. Clone a new voice")
print("2. Add a fine-tuned XTTS model to a voice actor")
print("3. Exit")
#choice = input("Enter your choice: ")
choice = "3"
if choice == '1':
clone_new_voice()
elif choice == '2':
add_fine_tuned_model()
elif choice == '3':
print("Exiting the program.")
break
else:
print("Invalid choice. Please try again.")
#fucntion that will use the terminal to change the default language
def select_language_terminal():
# Default language setting
default_language = "en"
language = default_language
# Ask user to change the language
#change_lang = input(f"Do you want to change the language(Character accent) from {default_language}? (yes/no): ").strip().lower()
change_lang = "no"
if change_lang == "yes":
# List available languages
languages = ['en', 'es', 'fr', 'de', 'it', 'pt', 'pl', 'tr', 'ru', 'nl', 'cs', 'ar', 'zh-cn', 'hu', 'ko', 'ja', 'hi'] # Extend as needed
print("Available languages:")
for i, lang in enumerate(languages):
print(f"{i + 1}. {lang}")
# User selects the language
while True:
try:
choice = int(input("Select a language by number: "))
language = languages[choice - 1]
break
except (IndexError, ValueError):
print("Invalid selection. Please try again.")
# Confirm the selection
confirm = input(f"Confirm changing language to {language}? (yes/no): ").strip().lower()
if confirm == "yes":
print(f"Language set to {language}.")
else:
print("Language change canceled. Using default English.")
language = default_language
else:
print("No language change requested. Using default English.")
return language
# Usage example
#selected_language = select_language_terminal()
#print(f"The selected language for TTS is: {selected_language}")
from tqdm import tqdm
# Function to generate audio for the text
def generate_audio():
ask_if_user_wants_to_add_fine_tuned_xtts_model_or_clone_a_voice()
selected_tts_model = select_tts_model()
#This will ask the user in the terminal if they want to generate all of the audio with only the narrerator's voice
#use_narrator_voice = input("Do you want to generate all audio with the Narrator voice? (yes/no): ").strip().lower()
use_narrator_voice = "no"
while use_narrator_voice not in ['yes', 'no']:
print("Invalid input. Please type 'yes' or 'no'.")
use_narrator_voice = input("Do you want to generate all audio with the Narrator voice? (yes/no): ").strip().lower()
use_narrator_voice = use_narrator_voice == 'yes'
global current_language
current_language = select_language_terminal()
# Get device
start_timez = time.time()
global multi_voice_model_voice_list1
global multi_voice_model_voice_list2
global multi_voice_model_voice_list3
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
global current_model
global STTS
ensure_temp_folder()
# List available TTS models
#print(TTS().list_models())
# Initialize the TTS model and set the device
#tts = TTS("tts_models/multilingual/multi-dataset/xtts_v2").to(device)
# Update the model initialization to use the selected model
#tts = TTS(selected_tts_model, progress_bar=True).to(device)
#fast_tts = TTS(multi_voice_model1, progress_bar=True).to(device)
random.seed(int(time.time()))
ensure_output_folder()
total_rows = len(data)
chapter_num = 0
add_voice_actors_to_csv()
add_languages_to_csv()
for index, row in tqdm(data.iterrows(), total=data.shape[0], desc="Generating AudioBook"):
#update_progress(index, total_rows) # Update progress based on the current index and total rows
speaker = row['Speaker']
text = row['Text']
#update_progress(index, total_rows, text) # Update progress based on the current index and total rows and text
language_code = character_languages.get(speaker, current_language) # Default to 'en' if not found
if calibre_installed:
if "NEWCHAPTERABC" in text:
chapter_num += 1
print(f"chapter num: {chapter_num}")
print(f"CHAPTER KEYWORD IS: NEWCHAPTERABC")
text = text.replace("NEWCHAPTERABC", "")
elif CHAPTER_KEYWORD in text.upper():
chapter_num += 1
print(f"chapter num: {chapter_num}")
print(f"CHAPTER KEYWORD IS: {CHAPTER_KEYWORD}")
#This is the code for grabbing the current voice actor
#This will make it so that if the button for single voice is checked in the gui then the voice actor is always the narrerators:
if use_narrator_voice:
print(f"All audio is being generated with the Narrator voice.")
voice_actor = speaker_voice_map.get("Narrator")
else:
voice_actor = speaker_voice_map[speaker]
#voice_actor = speaker_voice_map[speaker]
sentences = sent_tokenize(text)
audio_tensors = []
temp_count =0
for sentence in sentences:
fragments = split_long_sentence(sentence)
for fragment in fragments:
# Check if the selected model is multilingual
if 'multilingual' in selected_tts_model:
language_code = character_languages.get(speaker, current_language)
else:
language_code = None # No language specification for non-multilingual models
print(f"Voice actor: {voice_actor}, {current_language}")
temp_count = temp_count +1
# Use the model and language code to generate the audio
#tts = TTS(model_name="tts_models/en/ek1/tacotron2", progress_bar=False).to(device)
#tts.tts_to_file(fragment, speaker_wav=list_reference_files(voice_actor), progress_bar=True, file_path=f"Working_files/temp/{temp_count}.wav")
#this will make it so that if your selecting a model as a voice actor name then itll initalize the voice actor name as the model
if voice_actor in multi_voice_model_voice_list1:
print(f"{voice_actor} is a fast model voice: {multi_voice_model1}")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
if current_model != multi_voice_model1:
fast_tts = TTS(multi_voice_model1, progress_bar=True).to("cpu")
current_model = multi_voice_model1
print(f"The model used in fast_tts has been changed to {current_model}")
fast_tts.tts_to_file(text=fragment, file_path=f"Working_files/temp/{temp_count}.wav", speaker=voice_actor)
elif voice_actor in multi_voice_model_voice_list2:
print(f"{voice_actor} is a fast model voice: {multi_voice_model2}")
if current_model != multi_voice_model2:
fast_tts = TTS(multi_voice_model2, progress_bar=True).to("cpu")
current_model = multi_voice_model2
print(f"The model used in fast_tts has been changed to {current_model}")
fast_tts.tts_to_file(text=fragment, file_path=f"Working_files/temp/{temp_count}.wav", speaker=voice_actor)
elif voice_actor in multi_voice_model_voice_list3:
print(f"{voice_actor} is a fast model voice: {multi_voice_model3}")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
if current_model != multi_voice_model3:
fast_tts = TTS(multi_voice_model3, progress_bar=True).to("cpu")
current_model = multi_voice_model3
print(f"The model used in fast_tts has been changed to {current_model}")
fast_tts.tts_to_file(text=fragment, file_path=f"Working_files/temp/{temp_count}.wav", speaker=voice_actor)
elif "tts_models" in voice_actor and "multi-dataset" not in voice_actor:
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
if current_model != voice_actor:
fast_tts = TTS(voice_actor, progress_bar=True).to(device)
current_model = voice_actor
print(f"The model used in fast_tts has been changed to {current_model}")
#selected_tts_model = voice_actor
#"Model is multi-lingual but no `language` is provided."
print(f"Model for this character has been switched to: {voice_actor} by user")
try:
fast_tts.tts_to_file(text=fragment, file_path=f"Working_files/temp/{temp_count}.wav")
except ValueError as e:
if str(e) == "Model is multi-lingual but no `language` is provided.":
print("attempting to correct....")
fast_tts.tts_to_file(text=fragment, file_path=f"Working_files/temp/{temp_count}.wav",language=language_code)
print("Successfully Corrected!")
#else:
# print(f"{voice_actor} is neither multi-dataset nor multilingual")
# tts.tts_to_file(text=fragment,file_path=f"Working_files/temp/{temp_count}.wav") # Assuming the tts_to_file function has default arguments for unspecified parameters
#If the voice actor has a custom fine tuned xtts model in its refrence folder ie if it has the model folder containing it
elif os.path.exists(f"tortoise/voices/{voice_actor}/model") and os.path.isdir(f"tortoise/voices/{voice_actor}/model") and 'xtts' in selected_tts_model:
speaker_wavz=list_reference_files(voice_actor)
fineTune_audio_generate(text=fragment, file_path=f"Working_files/temp/{temp_count}.wav", speaker_wav=speaker_wavz[0], language=language_code, voice_actor=voice_actor)
# If the model contains both "multilingual" and "multi-dataset"
elif "multilingual" in selected_tts_model and "multi-dataset" in selected_tts_model:
if 'tts' not in locals():
tts = TTS(selected_tts_model, progress_bar=True).to(device)
try:
if "bark" in selected_tts_model:
print(f"{selected_tts_model} is bark so multilingual but has no language code")
#device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
#tts = TTS(selected_tts_model, progress_bar=True).to(device)
tts.tts_to_file(text=fragment, file_path=f"Working_files/temp/{temp_count}.wav", speaker_wav=list_reference_files(voice_actor))
else:
print(f"{selected_tts_model} is multi-dataset and multilingual")
#device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
#tts = TTS(selected_tts_model, progress_bar=True).to(device)
tts.tts_to_file(text=fragment, file_path=f"Working_files/temp/{temp_count}.wav", speaker_wav=list_reference_files(voice_actor), language=language_code)
except ValueError as e:
if str(e) == "Model is not multi-lingual but `language` is provided.":
print("Caught ValueError: Model is not multi-lingual. Ignoring the language parameter.")
#device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
#tts = TTS(selected_tts_model, progress_bar=True).to(device)
tts.tts_to_file(text=fragment, file_path=f"Working_files/temp/{temp_count}.wav", speaker_wav=list_reference_files(voice_actor))
# If the model only contains "multilingual"
elif "multilingual" in selected_tts_model:
print(f"{selected_tts_model} is multilingual")
#device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
#tts = TTS(selected_tts_model, progress_bar=True).to(device)
if 'tts' not in locals():
tts = TTS(selected_tts_model, progress_bar=True).to(device)
tts.tts_to_file(text=fragment, file_path=f"Working_files/temp/{temp_count}.wav", language=language_code)
# If the model only contains "multi-dataset"
elif "multi-dataset" in selected_tts_model:
print(f"{selected_tts_model} is multi-dataset")
#device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
#tts = TTS(selected_tts_model, progress_bar=True).to(device)
if 'tts' not in locals():
tts = TTS(selected_tts_model, progress_bar=True).to(device)
tts.tts_to_file(text=fragment, file_path=f"Working_files/temp/{temp_count}.wav")
elif 'StyleTTS2' in selected_tts_model:
print(f'{selected_tts_model} model is selected for voice cloning')
if 'STTS' not in locals():
STTS = stts.StyleTTS2()
STTS.inference(fragment, target_voice_path=list_reference_files(voice_actor)[0], output_wav_file=f"Working_files/temp/{temp_count}.wav")
#if the model selected is one of the fast voice clone models as in not really voice clone but use voice transfer
#right now im setting all of the fast voice cloning to be run on the cpu come can only be run on cpu and I'm lazy rn lol
elif selected_tts_model in fast_voice_clone_models_dict:
print(f"Using voice conversion voice cloning method and the selected model for this is {selected_tts_model}")
#device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
if current_model != selected_tts_model:
if "tts" not in locals():
#tts = TTS(selected_tts_model).to(device)
tts = TTS(selected_tts_model).to("cpu")
current_model = selected_tts_model
try:
tts.tts_with_vc_to_file(
fragment,
speaker_wav=list_reference_files(voice_actor)[0],
file_path=f"Working_files/temp/{temp_count}.wav",
speaker=fast_voice_clone_models_dict[selected_tts_model]
)
except Exception as e:
print(f"An error occurred but was ignored: {e}")
print("But continuing anyway but you should probs look at that error: its probably that the input for the tts model is too short so idk find a way to fix it if it runs into an issue like this:")
# If the model contains neither "multilingual" nor "multi-dataset"
else:
print(f"{selected_tts_model} is neither multi-dataset nor multilingual")
#device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
#tts = TTS(selected_tts_model, progress_bar=True).to(device)
if 'tts' not in locals():
tts = TTS(selected_tts_model, progress_bar=True).to(device)
tts.tts_to_file(text=fragment,file_path=f"Working_files/temp/{temp_count}.wav") # Assuming the tts_to_file function has default arguments for unspecified parameters
temp_input_directory = "Working_files/temp" # Replace with the actual input directory path
output_directory = "Working_files/generated_audio_clips" # Replace with the desired output directory path
combine_wav_files(temp_input_directory, output_directory, f"audio_{index}_{chapter_num}.wav")
wipe_folder("Working_files/temp")
end_timez = time.time()
durationz = end_timez - start_timez
print("GENERATION TIME:" + str(durationz))
#root.destroy()
from functools import partial
def format_time(seconds):
"""
Formats time in seconds to a more readable string with minutes, hours, days, and years if applicable.
"""
minute = 60
hour = minute * 60
day = hour * 24
year = day * 365
years = seconds // year
seconds %= year
days = seconds // day
seconds %= day
hours = seconds // hour
seconds %= hour
minutes = seconds // minute
seconds %= minute
time_string = ""
if years > 0:
time_string += f"{years:.0f} year{'s' if years > 1 else ''} "
if days > 0:
time_string += f"{days:.0f} day{'s' if days > 1 else ''} "
if hours > 0:
time_string += f"{hours:.0f} hour{'s' if hours > 1 else ''} "
if minutes > 0:
time_string += f"{minutes:.0f} min "
time_string += f"{seconds:.0f} sec"
return time_string.strip()
def update_progress(index, total, row_text):
current_time = time.time()
# Calculate elapsed time
elapsed_time = current_time - start_time
# Update total characters processed and count of processed rows
global total_chars_processed, processed_rows_count
total_chars_processed += len(row_text)
processed_rows_count += 1
# Calculate progress
progress = (index + 1) / total * 100
# Estimate remaining time
if processed_rows_count > 0: # Avoid division by zero
average_chars_per_row = total_chars_processed / processed_rows_count
estimated_chars_remaining = average_chars_per_row * (total - processed_rows_count)
average_time_per_char = elapsed_time / total_chars_processed
estimated_time_remaining = average_time_per_char * estimated_chars_remaining
remaining_time_string = format_time(estimated_time_remaining)
else:
remaining_time_string = "Calculating..."
# Update progress label with estimated time
progress_label.config(text=f"{progress:.2f}% done ({index+1}/{total} rows) - {remaining_time_string}")
root.update_idletasks()
# Start time capture and initialize counters
start_time = time.time()
total_chars_processed = 0
processed_rows_count = 0
def create_scrollable_frame(parent, height):
# Create a canvas with a specific height
canvas = tk.Canvas(parent, height=height)
scrollbar = ttk.Scrollbar(parent, orient="vertical", command=canvas.yview)
scrollable_frame = ttk.Frame(canvas)
canvas.configure(yscrollcommand=scrollbar.set)
canvas.create_window((0, 0), window=scrollable_frame, anchor="nw")
scrollable_frame.bind(
"<Configure>",
lambda e: canvas.configure(scrollregion=canvas.bbox("all"))
)
canvas.pack(side="left", fill="both", expand=True)
scrollbar.pack(side="right", fill="y")
return scrollable_frame
def update_chapter_keyword(*args):
global CHAPTER_KEYWORD
CHAPTER_KEYWORD = chapter_delimiter_var.get()
# Add a trace to call update_chapter_keyword whenever the value changes
chapter_delimiter_var.trace_add("write", update_chapter_keyword)
## Frame for Language Selection Dropdown
#language_selection_frame = ttk.LabelFrame(root, text="Select TTS Language")
#language_selection_frame.pack(fill="x", expand="yes", padx=10, pady=10)
## Create a dropdown for language selection
#language_var = tk.StringVar()
#language_combobox = ttk.Combobox(language_selection_frame, textvariable=language_var, state="readonly")
#language_combobox['values'] = list(languages.keys()) # Use the display names for the user
#language_combobox.set('English') # Set default value
#def on_language_selected(event):
# global current_language
# # Update the current_language variable based on selection
# current_language = languages[language_combobox.get()]
# print(f"current language updated to: {current_language}")
#language_combobox.bind("<<ComboboxSelected>>", on_language_selected)
#language_combobox.pack(side="top", fill="x", expand="yes")
#fuck
## Progress Bar
#progress_var = tk.DoubleVar()
#progress_bar = ttk.Progressbar(root, variable=progress_var, maximum=100)
#progress_bar.pack()
#progress_label = ttk.Label(root, text="0% done")
#progress_label.pack()
## Create a frame to contain the buttons
#buttons_frame = ttk.Frame(root)
#buttons_frame.pack(pady=10)
## Generate Audio Button
#generate_button = ttk.Button(buttons_frame, text="Generate Audio", command=lambda: threading.Thread(target=generate_audio).start())
#generate_button.pack(side=tk.LEFT, padx=5)
#root.mainloop()
generate_audio()
#this code here will make sure the folder where all the chapter audio files go i whiped before it starts creating the chapter files cause there might be stuff from the last session
import os
import shutil
def wipe_folder(folder_path):
if os.path.exists(folder_path) and os.path.isdir(folder_path):
print(f"Folder '{folder_path}' found. Proceeding to wipe...")
shutil.rmtree(folder_path)
print(f"Folder '{folder_path}' has been wiped.")
else:
print(f"Folder '{folder_path}' does not exist. No action taken.")
# Usage
folder_to_wipe = "Final_combined_output_audio"
wipe_folder(folder_to_wipe)
#this code here will combined all the tiny generated audio files into chapter audio files
import os
import pandas as pd
import torch
import torchaudio
import pygame
colors = ['#FFB6C1', '#ADD8E6', '#FFDAB9', '#98FB98', '#D8BFD8']
speaker_colors = {}
currently_playing = None
INPUT_FOLDER = "Working_files/generated_audio_clips"
OUTPUT_FOLDER = "Final_combined_output_audio"
#marked out cause its not defined earlier on in the code in the field
#SILENCE_DURATION_MS = 0
try:
pygame.mixer.init()
print("mixer modual initialized successfully.")
except pygame.error:
print("mixer modual initialization failed")
print(pygame.error)
def combine_audio_files(silence_duration_ms):
folder_path = os.path.join(os.getcwd(), INPUT_FOLDER)
files = sorted([f for f in os.listdir(folder_path) if f.startswith("audio_") and f.endswith(".wav")],
key=lambda f: (int(f.split('_')[2].split('.')[0]), int(f.split('_')[1].split('.')[0])))
chapter_files = {}
for file in files:
chapter_num = int(file.split('_')[2].split('.')[0])
if chapter_num not in chapter_files:
chapter_files[chapter_num] = []
chapter_files[chapter_num].append(file)
for chapter_num, chapter_file_list in chapter_files.items():
combined_tensor = torch.Tensor()
for index, file in enumerate(chapter_file_list):
waveform, sample_rate = torchaudio.load(os.path.join(folder_path, file))
channels = waveform.shape[0]
silence_tensor = torch.zeros(channels, int(silence_duration_ms * sample_rate / 1000))
combined_tensor = torch.cat([combined_tensor, waveform, silence_tensor], dim=1)
print(f"Processing Chapter {chapter_num} - File {index + 1}/{len(chapter_file_list)}: {file}")
if not os.path.exists(os.path.join(os.getcwd(), OUTPUT_FOLDER)):
os.makedirs(os.path.join(os.getcwd(), OUTPUT_FOLDER))
output_path = os.path.join(os.getcwd(), OUTPUT_FOLDER, f"chapter_{chapter_num}.wav")
torchaudio.save(output_path, combined_tensor, sample_rate)
print("Combining audio files complete!")
combine_audio_files(SILENCE_DURATION_MS)
#this code here will create the actual nicely formatted m4b file with chapters and image metadata and everything located at output audiobook
import os
import subprocess
from pydub import AudioSegment
import shlex
def sort_chapters(file):
# Extract chapter number from the filename
number_part = re.findall(r'\d+', file)
if number_part:
return int(number_part[0])
return 0
def extract_ebook_metadata(ebook_file):
try:
metadata_cmd = ['ebook-meta', ebook_file]
metadata_output = subprocess.run(metadata_cmd, capture_output=True, text=True).stdout
metadata = {}
# Extracting various metadata fields
for line in metadata_output.splitlines():
if ':' in line:
key, value = line.split(':', 1)
metadata[key.strip()] = value.strip()
# Extracting the cover image
output_image = os.path.join('/tmp', os.path.basename(ebook_file) + '.jpg')
subprocess.run(['ebook-meta', ebook_file, '--get-cover', output_image], check=True)
if not os.path.exists(output_image):
output_image = None
return output_image, metadata
except Exception as e:
print(f"Error extracting eBook metadata: {e}")
return None, {}
def generate_chapter_metadata(wav_files, metadata_filename):
with open(metadata_filename, 'w') as file:
file.write(";FFMETADATA1\n")
start_time = 0
for index, wav_file in enumerate(wav_files):
duration = len(AudioSegment.from_wav(wav_file))
end_time = start_time + duration
file.write(f"[CHAPTER]\nTIMEBASE=1/1000\nSTART={start_time}\nEND={end_time}\ntitle=Chapter {index+1:02d}\n")
start_time = end_time
def combine_wav_to_m4b_ffmpeg(wav_files, m4b_filename, cover_image, metadata_filename, metadata):
print("Combining WAV files into an M4B audiobook using FFmpeg...")
with open('file_list.txt', 'w') as file:
for wav_file in wav_files:
file.write(f"file '{shlex.quote(wav_file)}'\n")
ffmpeg_cmd = f"ffmpeg -f concat -safe 0 -i file_list.txt -c copy combined.wav"
ffmpeg_cmd += f" && ffmpeg -i combined.wav -i {shlex.quote(metadata_filename)}"
if cover_image:
ffmpeg_cmd += f" -i {shlex.quote(cover_image)}"
for key, value in metadata.items():
ffmpeg_cmd += f" -metadata {key}=\"{value}\""
ffmpeg_cmd += f" -map_metadata 1"
if cover_image:
ffmpeg_cmd += f" -map 0 -map 2"
ffmpeg_cmd += f" -c:a aac -b:a 192k"
if cover_image:
ffmpeg_cmd += f" -c:v copy -disposition:v:0 attached_pic"
ffmpeg_cmd += f" {shlex.quote(m4b_filename)}"
os.system(ffmpeg_cmd)
print(f"M4B audiobook created: {m4b_filename}")
# Cleanup
os.remove('file_list.txt')
if os.path.exists('combined.wav'):
os.remove('combined.wav')
os.remove(metadata_filename)
if cover_image and os.path.exists(cover_image):
os.remove(cover_image)
def convert_all_wav_to_m4b(input_dir, ebook_file, output_dir, audiobook_name):
if not os.path.exists(output_dir):
os.makedirs(output_dir)
print(f"Created output directory: {output_dir}")
cover_image, ebook_metadata = extract_ebook_metadata(ebook_file)
wav_files = [os.path.join(input_dir, f) for f in os.listdir(input_dir) if f.endswith('.wav')]
wav_files.sort(key=sort_chapters)
m4b_filename = os.path.join(output_dir, f'{audiobook_name}.m4b')
metadata_filename = 'chapter_metadata.txt'
# Setting up the metadata
metadata = {
'artist': ebook_metadata.get('Author(s)', 'Unknown Author'),
'album': ebook_metadata.get('Series', 'Unknown Series'),
'Title': ebook_metadata.get('Title', f'{audiobook_name}.m4b'),
'date': ebook_metadata.get('Published', 'Unknown Year'),
'Genre': ebook_metadata.get('Tags', 'Unknown Genre'),
'Comment': ebook_metadata.get('Tags', 'No description available.'),
# Add other metadata fields as needed
}
m4b_filename = ebook_metadata.get('Title', f"audiobook_name")
m4b_filename = os.path.join(output_dir, f'{m4b_filename}.m4b')
generate_chapter_metadata(wav_files, metadata_filename)
combine_wav_to_m4b_ffmpeg(wav_files, m4b_filename, cover_image, metadata_filename, metadata)
# Example usage
input_dir = "Final_combined_output_audio" # Update this path to your WAV files folder
ebook_file = ebook_file_path # Update this path to your eBook file
output_dir = 'output_audiobooks'
audiobook_name = os.path.splitext(os.path.basename(ebook_file))[0] # Update this path to your desired output directory
convert_all_wav_to_m4b(input_dir, ebook_file, output_dir, audiobook_name)
#this will convert all the audio files into a mp4 format instead of wav to save space
#at the same time it will also delete the wav files as it converts them
from moviepy.editor import *
def convert_wav_to_mp4(wav_filename, mp4_filename):
audio = AudioFileClip(wav_filename)
audio.write_audiofile(mp4_filename, codec='aac')
def convert_all_wav_to_mp4():
output_dir = "Final_combined_output_audio"
wav_files = [f for f in os.listdir(output_dir) if f.endswith('.wav')]
for wav_file in wav_files:
wav_filename = os.path.join(output_dir, wav_file)
mp4_filename = os.path.join(output_dir, wav_file.replace('.wav', '.mp4'))
convert_wav_to_mp4(wav_filename, mp4_filename)
print(f"{wav_filename} has been converted to {mp4_filename}.")
os.remove(wav_filename)
print(f"{wav_filename} as been deleted.")
convert_all_wav_to_mp4()
#this will add the cover of the epub file to the mp4 combined files
print("Adding Book Artwork to mp4 chatper files if calibre is installed")
import os
import subprocess
def extract_cover_image_calibre(ebook_file):
"""
Extracts the cover image from an eBook file using Calibre's ebook-meta tool.
Args:
ebook_file (str): The path to the eBook file.
Returns:
str: The path to the extracted cover image or None if not found.
"""
output_image = os.path.join('/tmp', os.path.basename(ebook_file) + '.jpg')
try:
subprocess.run(['ebook-meta', ebook_file, '--get-cover', output_image], check=True)
if os.path.exists(output_image):
return output_image
else:
return None
except Exception as e:
print(f"Error extracting cover image: {e}")
return None
def set_cover_to_mp4(cover_image, mp4_folder):
"""
Sets the extracted cover image to all mp4 files in a specified folder.
Args:
cover_image (str): The path to the cover image.
mp4_folder (str): The path to the folder containing mp4 files.
"""
if not cover_image or not os.path.exists(cover_image):
print("Cover image not found.")
return
# Process each mp4 file in the folder
for file in os.listdir(mp4_folder):
if file.lower().endswith('.mp4'):
mp4_path = os.path.join(mp4_folder, file)
# Set the cover image for the mp4 file
# Note: Requires ffmpeg
os.system(f'ffmpeg -i "{mp4_path}" -i "{cover_image}" -map 0 -map 1 -c copy -disposition:v:1 attached_pic "{mp4_path}.temp.mp4"')
os.rename(f"{mp4_path}.temp.mp4", mp4_path)
# Example usage
ebook_file = ebook_file_path # Update this path to your eBook file
mp4_folder = OUTPUT_FOLDER # Update this path to your MP4 folder
#if calibre is installed then set the cover image things
# Extract cover image from the eBook file
cover_image = extract_cover_image_calibre(ebook_file)
# Set cover image to all mp4 files in the specified folder
set_cover_to_mp4(cover_image, mp4_folder)