drkareemkamal commited on
Commit
e220c7a
·
verified ·
1 Parent(s): 8f9fabd

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +115 -0
app.py ADDED
@@ -0,0 +1,115 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from langchain_core.prompts import PromptTemplate
2
+ import os
3
+ from langchain_community.embeddings import HuggingFaceBgeEmbeddings
4
+ from langchain_community.vectorstores import FAISS
5
+ from langchain_community.llms.ctransformers import CTransformers
6
+ from langchain.chains.retrieval_qa.base import RetrievalQA
7
+ import streamlit as st
8
+ import fitz # PyMuPDF
9
+ from PIL import Image
10
+ import io
11
+
12
+ DB_FAISS_PATH = 'vectorstores/'
13
+ pdf_path = 'data/Gale_encyclopedia_of_medicine_vol_1.pdf'
14
+
15
+ custom_prompt_template = '''use the following pieces of information to answer the user's questions.
16
+ If you don't know the answer, please just say that don't know the answer, don't try to make uo an answer.
17
+ Context : {context}
18
+ Question : {question}
19
+ only return the helpful answer below and nothing else.
20
+ '''
21
+
22
+ def set_custom_prompt():
23
+ """
24
+ Prompt template for QA retrieval for vector stores
25
+ """
26
+ prompt = PromptTemplate(template = custom_prompt_template,
27
+ input_variables = ['context','question'])
28
+
29
+ return prompt
30
+
31
+
32
+ def load_llm():
33
+ llm = CTransformers(
34
+ model = 'TheBloke/Llama-2-7B-Chat-GGML',
35
+ model_type = 'llama',
36
+ max_new_token = 512,
37
+ temperature = 0.5
38
+ )
39
+ return llm
40
+
41
+ def retrieval_qa_chain(llm,prompt,db):
42
+ qa_chain = RetrievalQA.from_chain_type(
43
+ llm = llm,
44
+ chain_type = 'stuff',
45
+ retriever = db.as_retriever(search_kwargs= {'k': 2}),
46
+ return_source_documents = True,
47
+ chain_type_kwargs = {'prompt': prompt}
48
+ )
49
+
50
+ return qa_chain
51
+
52
+ def qa_bot():
53
+ embeddings = HuggingFaceBgeEmbeddings(model_name = 'sentence-transformers/all-MiniLM-L6-v2',
54
+ model_kwargs = {'device':'cpu'})
55
+
56
+
57
+ db = FAISS.load_local(DB_FAISS_PATH, embeddings, allow_dangerous_deserialization=True)
58
+ llm = load_llm()
59
+ qa_prompt = set_custom_prompt()
60
+ qa = retrieval_qa_chain(llm,qa_prompt, db)
61
+
62
+ return qa
63
+
64
+ def final_result(query):
65
+ qa_result = qa_bot()
66
+ response = qa_result({'query' : query})
67
+
68
+ return response
69
+
70
+ def get_pdf_page_as_image(pdf_path, page_number):
71
+ document = fitz.open(pdf_path)
72
+ page = document.load_page(page_number)
73
+ pix = page.get_pixmap()
74
+ img = Image.open(io.BytesIO(pix.tobytes()))
75
+ return img
76
+
77
+ # Streamlit webpage title
78
+ st.title('Medical Chatbot')
79
+
80
+ # User input
81
+ user_query = st.text_input("Please enter your question:")
82
+
83
+ # Button to get answer
84
+ if st.button('Get Answer'):
85
+ if user_query:
86
+ # Call the function from your chatbot script
87
+ response = final_result(user_query)
88
+ if response:
89
+ # Displaying the response
90
+ st.write("### Answer")
91
+ st.write(response['result'])
92
+
93
+ # Displaying source document details if available
94
+ if 'source_documents' in response:
95
+ st.write("### Source Document Information")
96
+ for doc in response['source_documents']:
97
+ # Retrieve and format page content by replacing '\n' with new line
98
+ formatted_content = doc.page_content.replace("\\n", "\n")
99
+ st.write("#### Document Content")
100
+ st.text_area(label="Page Content", value=formatted_content, height=300)
101
+
102
+ # Retrieve source and page from metadata
103
+ source = doc.metadata['source']
104
+ page = doc.metadata['page']
105
+ st.write(f"Source: {source}")
106
+ st.write(f"Page Number: {page+1}")
107
+
108
+ # Display the PDF page as an image
109
+ pdf_page_image = get_pdf_page_as_image(pdf_path, page)
110
+ st.image(pdf_page_image, caption=f"Page {page+1} from {source}")
111
+
112
+ else:
113
+ st.write("Sorry, I couldn't find an answer to your question.")
114
+ else:
115
+ st.write("Please enter a question to get an answer.")