File size: 1,545 Bytes
e5b8f4d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ea5949
e5b8f4d
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import re

from transformers import DonutProcessor, VisionEncoderDecoderModel
import gradio as gr
import torch
from PIL import Image

processor = DonutProcessor.from_pretrained("ewfian/donut_cn_invoice")
model = VisionEncoderDecoderModel.from_pretrained("ewfian/donut_cn_invoice")

device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)

task_prompt = "<s_totalAmountInWords>"
decoder_input_ids = processor.tokenizer(task_prompt, add_special_tokens=False, return_tensors="pt").input_ids

def process_document(image):

    pixel_values = processor(image, return_tensors="pt").pixel_values

    outputs = model.generate(
        pixel_values.to(device),
        decoder_input_ids=decoder_input_ids.to(device),
        max_length=model.decoder.config.max_position_embeddings,
        pad_token_id=processor.tokenizer.pad_token_id,
        eos_token_id=processor.tokenizer.eos_token_id,
        use_cache=True,
        bad_words_ids=[[processor.tokenizer.unk_token_id]],
        return_dict_in_generate=True,
    )

    sequence = processor.batch_decode(outputs.sequences)[0]
    sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "")
    sequence = re.sub(r"<.*?>", "", sequence, count=1).strip()  # remove first task start token
    return processor.token2json(sequence)

demo = gr.Interface(
    fn=process_document,
    inputs="image",
    outputs="json",
    title="Demo: Donut 🍩 for Chinese Invioce Parsing",
    cache_examples=False)

demo.launch(server_name="0.0.0.0")