Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,072 Bytes
7a7e7aa 76a453a 7a7e7aa 33ca1ea 7a7e7aa 76a453a 7a7e7aa 5e59719 7a7e7aa 33ca1ea 76a453a 7a7e7aa 33ca1ea 76a453a 33ca1ea 594539b 7a7e7aa 514b22c e4bab3b 7a7e7aa b6fbab7 199341b 1ab5a83 5d1b6a2 b6fbab7 1ab5a83 2bf0aaf b6fbab7 514b22c b6fbab7 a11bb63 cff4bdb a11bb63 bad7be7 b6fbab7 5d9fbe7 b6fbab7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 |
import os
import datetime
import einops
import gradio as gr
from gradio_imageslider import ImageSlider
import numpy as np
import torch
import random
from PIL import Image
from pathlib import Path
from torchvision import transforms
import torch.nn.functional as F
from torchvision.models import resnet50, ResNet50_Weights
from pytorch_lightning import seed_everything
from transformers import CLIPTextModel, CLIPTokenizer, CLIPImageProcessor
from diffusers import AutoencoderKL, DDIMScheduler, PNDMScheduler, DPMSolverMultistepScheduler, UniPCMultistepScheduler
from pipelines.pipeline_pasd import StableDiffusionControlNetPipeline
from myutils.misc import load_dreambooth_lora, rand_name
from myutils.wavelet_color_fix import wavelet_color_fix
from annotator.retinaface import RetinaFaceDetection
use_pasd_light = False
face_detector = RetinaFaceDetection()
if use_pasd_light:
from models.pasd_light.unet_2d_condition import UNet2DConditionModel
from models.pasd_light.controlnet import ControlNetModel
else:
from models.pasd.unet_2d_condition import UNet2DConditionModel
from models.pasd.controlnet import ControlNetModel
pretrained_model_path = "checkpoints/stable-diffusion-v1-5"
ckpt_path = "runs/pasd/checkpoint-100000"
#dreambooth_lora_path = "checkpoints/personalized_models/toonyou_beta3.safetensors"
dreambooth_lora_path = "checkpoints/personalized_models/majicmixRealistic_v6.safetensors"
#dreambooth_lora_path = "checkpoints/personalized_models/Realistic_Vision_V5.1.safetensors"
weight_dtype = torch.float16
device = "cuda"
scheduler = UniPCMultistepScheduler.from_pretrained(pretrained_model_path, subfolder="scheduler")
text_encoder = CLIPTextModel.from_pretrained(pretrained_model_path, subfolder="text_encoder")
tokenizer = CLIPTokenizer.from_pretrained(pretrained_model_path, subfolder="tokenizer")
vae = AutoencoderKL.from_pretrained(pretrained_model_path, subfolder="vae")
feature_extractor = CLIPImageProcessor.from_pretrained(f"{pretrained_model_path}/feature_extractor")
unet = UNet2DConditionModel.from_pretrained(ckpt_path, subfolder="unet")
controlnet = ControlNetModel.from_pretrained(ckpt_path, subfolder="controlnet")
vae.requires_grad_(False)
text_encoder.requires_grad_(False)
unet.requires_grad_(False)
controlnet.requires_grad_(False)
unet, vae, text_encoder = load_dreambooth_lora(unet, vae, text_encoder, dreambooth_lora_path)
text_encoder.to(device, dtype=weight_dtype)
vae.to(device, dtype=weight_dtype)
unet.to(device, dtype=weight_dtype)
controlnet.to(device, dtype=weight_dtype)
validation_pipeline = StableDiffusionControlNetPipeline(
vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, feature_extractor=feature_extractor,
unet=unet, controlnet=controlnet, scheduler=scheduler, safety_checker=None, requires_safety_checker=False,
)
#validation_pipeline.enable_vae_tiling()
validation_pipeline._init_tiled_vae(decoder_tile_size=224)
weights = ResNet50_Weights.DEFAULT
preprocess = weights.transforms()
resnet = resnet50(weights=weights)
resnet.eval()
def inference(input_image, prompt, a_prompt, n_prompt, denoise_steps, upscale, alpha, cfg, seed):
process_size = 768
resize_preproc = transforms.Compose([
transforms.Resize(process_size, interpolation=transforms.InterpolationMode.BILINEAR),
])
# Get the current timestamp
timestamp = datetime.datetime.now().strftime("%Y%m%d%H%M%S")
with torch.no_grad():
seed_everything(seed)
generator = torch.Generator(device=device)
input_image = input_image.convert('RGB')
batch = preprocess(input_image).unsqueeze(0)
prediction = resnet(batch).squeeze(0).softmax(0)
class_id = prediction.argmax().item()
score = prediction[class_id].item()
category_name = weights.meta["categories"][class_id]
if score >= 0.1:
prompt += f"{category_name}" if prompt=='' else f", {category_name}"
prompt = a_prompt if prompt=='' else f"{prompt}, {a_prompt}"
ori_width, ori_height = input_image.size
resize_flag = False
rscale = upscale
input_image = input_image.resize((input_image.size[0]*rscale, input_image.size[1]*rscale))
#if min(validation_image.size) < process_size:
# validation_image = resize_preproc(validation_image)
input_image = input_image.resize((input_image.size[0]//8*8, input_image.size[1]//8*8))
width, height = input_image.size
resize_flag = True #
try:
image = validation_pipeline(
None, prompt, input_image, num_inference_steps=denoise_steps, generator=generator, height=height, width=width, guidance_scale=cfg,
negative_prompt=n_prompt, conditioning_scale=alpha, eta=0.0,
).images[0]
if True: #alpha<1.0:
image = wavelet_color_fix(image, input_image)
if resize_flag:
image = image.resize((ori_width*rscale, ori_height*rscale))
except Exception as e:
print(e)
image = Image.new(mode="RGB", size=(512, 512))
# Convert and save the image as JPEG
image.save(f'result_{timestamp}.jpg', 'JPEG')
# Convert and save the image as JPEG
input_image.save(f'input_{timestamp}.jpg', 'JPEG')
return (f"input_{timestamp}.jpg", f"result_{timestamp}.jpg"), f"result_{timestamp}.jpg"
title = "Pixel-Aware Stable Diffusion for Real-ISR"
description = "Gradio Demo for PASD Real-ISR. To use it, simply upload your image, or click one of the examples to load them."
article = "<a href='https://github.com/yangxy/PASD' target='_blank'>Github Repo Pytorch</a>"
#examples=[['samples/27d38eeb2dbbe7c9.png'],['samples/629e4da70703193b.png']]
css = """
#col-container{
margin: 0 auto;
max-width: 720px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.HTML(f"""
<h2 style="text-align: center;">
PASD Magnify
</h2>
<p style="text-align: center;">
Pixel-Aware Stable Diffusion for Realistic Image Super-resolution and Personalized Stylization
</p>
""")
with gr.Row():
with gr.Column():
input_image = gr.Image(type="pil", sources=["upload"], value="samples/frog.png")
prompt_in = gr.Textbox(label="Prompt", value="Frog")
with gr.Accordion(label="Advanced settings", open=False):
added_prompt = gr.Textbox(label="Added Prompt", value='clean, high-resolution, 8k, best quality, masterpiece')
neg_prompt = gr.Textbox(label="Negative Prompt",value='dotted, noise, blur, lowres, oversmooth, longbody, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality')
denoise_steps = gr.Slider(label="Denoise Steps", minimum=10, maximum=50, value=20, step=1)
upsample_scale = gr.Slider(label="Upsample Scale", minimum=1, maximum=4, value=2, step=1)
condition_scale = gr.Slider(label="Conditioning Scale", minimum=0.5, maximum=1.5, value=1.1, step=0.1)
classifier_free_guidance = gr.Slider(label="Classier-free Guidance", minimum=0.1, maximum=10.0, value=7.5, step=0.1)
seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, randomize=True)
submit_btn = gr.Button("Submit")
with gr.Column():
b_a_slider = ImageSlider(label="B/A result", position=0.5)
file_output = gr.File(label="Downloadable image result")
submit_btn.click(
fn = inference,
inputs = [
input_image, prompt_in,
added_prompt, neg_prompt,
denoise_steps,
upsample_scale, condition_scale,
classifier_free_guidance, seed
],
outputs = [
b_a_slider,
file_output
]
)
demo.queue().launch() |