File size: 2,954 Bytes
03d6e86
 
 
 
 
 
57c5821
 
49124ad
de6d203
57c5821
49124ad
57c5821
5f82549
 
de6d203
 
b1a6dfa
de6d203
048e2e2
03d6e86
 
57c5821
b1a6dfa
 
5f82549
57c5821
5f82549
 
 
 
57c5821
b1a6dfa
 
 
 
 
 
03d6e86
 
 
 
 
57c5821
03d6e86
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9adca6f
03d6e86
 
 
 
 
 
 
 
 
 
 
 
 
 
57c5821
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
import streamlit as st
import pandas as pd
import torch
from transformers import pipeline
import datetime

# Load the CSV file and ensure proper formatting
df = pd.read_csv("anomalies.csv", quotechar='"')

# Convert 'real' column to standard float format and then to strings
df['real'] = df['real'].apply(lambda x: f"{x:.2f}")

# Fill NaN values and convert all columns to strings
df = df.fillna('').astype(str)

# Truncate long strings in 'Group' column if necessary
df['Group'] = df['Group'].str.slice(0, 255)

# Function to generate a response using the TAPAS model
def response(user_question, df):
    a = datetime.datetime.now()

    # Initialize the TAPAS model
    tqa = pipeline(task="table-question-answering", model="google/tapas-large-finetuned-wtq", 
                   tokenizer_kwargs={"clean_up_tokenization_spaces": False})

    # Debugging information
    print("DataFrame shape:", df.shape)
    print("DataFrame head:\n", df.head())
    print("User question:", user_question)

    # Query the TAPAS model
    try:
        answer = tqa(table=df, query=user_question)['answer']
    except IndexError as e:
        print(f"Error: {e}")
        answer = "Error occurred: " + str(e)
    
    query_result = {
        "Resposta": answer
    }

    b = datetime.datetime.now()
    print("Time taken:", b - a)

    return query_result

# Streamlit interface
st.markdown("""
<div style='display: flex; align-items: center;'>
    <div style='width: 40px; height: 40px; background-color: green; border-radius: 50%; margin-right: 5px;'></div>
    <div style='width: 40px; height: 40px; background-color: red; border-radius: 50%; margin-right: 5px;'></div>
    <div style='width: 40px; height: 40px; background-color: yellow; border-radius: 50%; margin-right: 5px;'></div>
    <span style='font-size: 40px; font-weight: bold;'>Chatbot do Tesouro RS</span>
</div>
""", unsafe_allow_html=True)

# Chat history
if 'history' not in st.session_state:
    st.session_state['history'] = []

# Input box for user question
user_question = st.text_input("Escreva sua questão aqui:", "")

if user_question:
    # Add human emoji when user asks a question
    st.session_state['history'].append(('👤', user_question))
    st.markdown(f"**👤 {user_question}**")
    
    # Generate the response
    bot_response = response(user_question, df)["Resposta"]
    
    # Add robot emoji when generating response and align to the right
    st.session_state['history'].append(('🤖', bot_response))
    st.markdown(f"<div style='text-align: right'>**🤖 {bot_response}**</div>", unsafe_allow_html=True)

# Clear history button
if st.button("Limpar"):
    st.session_state['history'] = []

# Display chat history
for sender, message in st.session_state['history']:
    if sender == '👤':
        st.markdown(f"**👤 {message}**")
    elif sender == '🤖':
        st.markdown(f"<div style='text-align: right'>**🤖 {message}**</div>", unsafe_allow_html=True)