Spaces:
Sleeping
Sleeping
""" | |
Module for detecting fallacies in text. | |
Functions: | |
- rebuttal_generator: Detects fallacies in a text input by utilizing models for fallacy | |
detection and semantic textual similarity and generates a rebuttal for the fallacious claim. | |
- query: Sends a query to a specified API endpoint with the provided payload and returns | |
the response. | |
- demo: Launches a Gradio interface for interactively detecting fallacies in text. | |
Dependencies: | |
- os: Provides a portable way of using operating system dependent functionality. | |
- json: Provides functions for encoding and decoding JSON data. | |
- requests: Allows sending HTTP requests easily. | |
- gradio: Facilitates the creation of customizable UI components for machine learning models. | |
- langchain_google_genai: Wrapper for Google Generative AI language models. | |
- auxiliar: Contains auxiliary data used in the fallacy detection process. | |
Environment Variables: | |
- HF_API_KEY: API key for accessing Hugging Face model APIs. | |
- GOOGLE_API_KEY: API key for accessing Google APIs. | |
Constants: | |
- FLICC_MODEL: API endpoint for the FLICC model used for fallacy detection. | |
- CARDS_MODEL: API endpoint for the CARDS model used for fallacy detection. | |
- SEMANTIC_TEXTUAL_SIMILARITY: API endpoint for the model used for semantic textual similarity. | |
Global Variables: | |
- hf_api_key: API key for accessing Hugging Face model APIs. | |
- google_key: API key for accessing Google APIs. | |
- safety_settings: Settings for safety measures in the Google Generative AI model. | |
- llm: Instance of the GoogleGenerativeAI class for text generation. | |
- similarity_template: Template for generating prompts for similarity comparison. | |
- FALLACY_CLAIMS: Dictionary containing fallacy labels and corresponding claims. | |
- DEBUNKINGS: Dictionary containing debunkings for fallacy claims. | |
- DEFINITIONS: Dictionary containing definitions for fallacy labels. | |
""" | |
import os | |
import json | |
import requests | |
from langchain_google_genai import GoogleGenerativeAI | |
from langchain.prompts import PromptTemplate | |
from langchain.chains import LLMChain | |
from auxiliar import ( | |
FALLACY_CLAIMS, | |
DEBUNKINGS, | |
DEFINITIONS, | |
SIMILARITY_TEMPLATE, | |
) | |
hf_api_key = os.environ["HF_API_KEY"] | |
google_key = os.environ["GOOGLE_API_KEY"] | |
llm = GoogleGenerativeAI( | |
model="models/text-bison-001", | |
google_api_key=google_key, | |
temperature=0, | |
# safety_settings=safety_settings, | |
) | |
similarity_template = PromptTemplate.from_template(SIMILARITY_TEMPLATE) | |
def query(payload, api_url, api_token=hf_api_key): | |
""" | |
Sends a query to the specified API endpoint with the provided payload. | |
Args: | |
payload (dict): The payload to be sent to the API. | |
api_url (str): The URL of the API endpoint. | |
api_token (str, optional): The API token used for authentication. Defaults to hf_api_key. | |
Returns: | |
dict: The JSON response from the API. | |
Raises: | |
ValueError: If the response content cannot be decoded as UTF-8. | |
Example: | |
>>> query({"text": "example text"}, "https://api.example.com") | |
{'status': 'success', 'result': 'example result'} | |
""" | |
headers = {"Authorization": f"Bearer {api_token}"} | |
options = {"use_cache": False, "wait_for_model": True} | |
payload = {"inputs": payload, "options": options} | |
response = requests.post(api_url, headers=headers, json=payload) | |
return json.loads(response.content.decode("utf-8")) | |
FLICC_MODEL = "https://api-inference.huggingface.co/models/fzanartu/flicc" | |
CARDS_MODEL = ( | |
"https://api-inference.huggingface.co/models/crarojasca/BinaryAugmentedCARDS" | |
) | |
SEMANTIC_TEXTUAL_SIMILARITY = ( | |
"https://api-inference.huggingface.co/models/sentence-transformers/all-MiniLM-L6-v2" | |
) | |
def rebuttal_generator(text): | |
""" | |
Generates a rebuttal for a text containing a detected fallacy. | |
This function detects fallacies in the input text and generates a rebuttal | |
for the fallacious claim. | |
Args: | |
text (str): The input text containing a potentially fallacious claim. | |
Returns: | |
str: A rebuttal for the fallacious claim in the input text. | |
Raises: | |
ValueError: If no similar sentence is found. | |
Example: | |
>>> rebuttal_generator("This is a text containing a fallacy.") | |
'A rebuttal to the fallacy of [fallacy label]: [rebuttal]' | |
""" | |
response = query(text, api_url=CARDS_MODEL) | |
if response[0][0].get("label") == "Contrarian": | |
response = query(text, api_url=FLICC_MODEL) | |
label = response[0][0].get("label") | |
claims = FALLACY_CLAIMS.get(label, None) | |
if claims: | |
data = query( | |
{"source_sentence": text, "sentences": claims}, | |
api_url=SEMANTIC_TEXTUAL_SIMILARITY, | |
) | |
max_similarity = data.index(max(data)) | |
chain = LLMChain(llm=llm, prompt=similarity_template, verbose=True) | |
result = chain.run( | |
{ | |
"claim": claims[max_similarity], | |
"fallacy": label, | |
"definition": DEFINITIONS.get(label), | |
"example": DEBUNKINGS.get(claims[max_similarity]), | |
"text": text, | |
} | |
) | |
else: | |
raise ValueError("No similar sentence found") | |
else: | |
result = "No fallacy has been detected in your text." | |
return result | |