Spaces:
Sleeping
Sleeping
import os | |
from dotenv import load_dotenv | |
from collections.abc import AsyncIterator | |
from contextlib import asynccontextmanager | |
from fastapi import FastAPI, Query | |
from fastapi.responses import FileResponse | |
from fastapi.staticfiles import StaticFiles | |
from fastapi_cache import FastAPICache | |
from fastapi_cache.backends.redis import RedisBackend | |
from fastapi_cache.coder import PickleCoder | |
from fastapi_cache.decorator import cache | |
import logging | |
from redis import asyncio as aioredis | |
from pydantic import BaseModel, Field | |
from typing import Tuple, List, Union, Optional | |
from sklearn.pipeline import Pipeline | |
from sklearn.preprocessing._label import LabelEncoder | |
import joblib | |
import pandas as pd | |
import httpx | |
from io import BytesIO | |
from config import ONE_DAY_SEC, ONE_WEEK_SEC, XGBOOST_URL, RANDOM_FOREST_URL, ENCODER_URL, ENV_PATH, DESCRIPTION, ALL_MODELS | |
load_dotenv(ENV_PATH) | |
async def lifespan(_: FastAPI) -> AsyncIterator[None]: | |
url = os.getenv("REDIS_URL") | |
username = os.getenv("REDIS_USERNAME") | |
password = os.getenv("REDIS_PASSWORD") | |
redis = aioredis.from_url(url=url, username=username, | |
password=password, encoding="utf8", decode_responses=True) | |
FastAPICache.init(RedisBackend(redis), prefix="fastapi-cache") | |
yield | |
# FastAPI Object | |
app = FastAPI( | |
title='Sepsis classification', | |
version='1.0.0', | |
description=DESCRIPTION, | |
lifespan=lifespan, | |
) | |
app.mount("/assets", StaticFiles(directory="assets"), name="assets") | |
async def favicon(): | |
file_name = "favicon.ico" | |
file_path = os.path.join(app.root_path, "assets", file_name) | |
return FileResponse(path=file_path, headers={"Content-Disposition": "attachment; filename=" + file_name}) | |
# API input features | |
class SepsisFeatures(BaseModel): | |
prg: List[int] = Field(description="PRG: Plasma glucose") | |
pl: List[int] = Field(description="PL: Blood Work Result-1 (mu U/ml)") | |
pr: List[int] = Field(description="PR: Blood Pressure (mm Hg)") | |
sk: List[int] = Field(description="SK: Blood Work Result-2 (mm)") | |
ts: List[int] = Field(description="TS: Blood Work Result-3 (mu U/ml)") | |
m11: List[float] = Field( | |
description="M11: Body mass index (weight in kg/(height in m)^2") | |
bd2: List[float] = Field(description="BD2: Blood Work Result-4 (mu U/ml)") | |
age: List[int] = Field(description="Age: patients age (years)") | |
insurance: List[int] = Field( | |
description="Insurance: If a patient holds a valid insurance card") | |
class Url(BaseModel): | |
url: str | |
pipeline_url: str | |
encoder_url: str | |
class ResultData(BaseModel): | |
prediction: List[str] | |
probability: List[float] | |
class PredictionResponse(BaseModel): | |
execution_msg: str | |
execution_code: int | |
result: ResultData | |
class ErrorResponse(BaseModel): | |
execution_msg: str | |
execution_code: int | |
error: Optional[str] | |
logging.basicConfig(level=logging.ERROR, | |
format='%(asctime)s - %(levelname)s - %(message)s') | |
# Load the model pipelines and encoder | |
# Cache for 1 day | |
async def load_pipeline(pipeline_url: Url, encoder_url: Url) -> Tuple[Pipeline, LabelEncoder]: | |
async def url_to_data(url: Url): | |
async with httpx.AsyncClient() as client: | |
response = await client.get(url) | |
response.raise_for_status() # Ensure we catch any HTTP errors | |
# Convert response content to BytesIO object | |
data = BytesIO(response.content) | |
return data | |
pipeline, encoder = None, None | |
try: | |
pipeline: Pipeline = joblib.load(await url_to_data(pipeline_url)) | |
encoder: LabelEncoder = joblib.load(await url_to_data(encoder_url)) | |
except Exception as e: | |
logging.error( | |
"Omg, an error occurred in loading the pipeline resources: %s", e) | |
finally: | |
return pipeline, encoder | |
# Endpoints | |
# Status endpoint: check if api is online | |
# Cache for 1 week | |
async def status_check(): | |
return {"Status": "API is online..."} | |
# Cache for 1 day | |
async def pipeline_classifier(pipeline: Pipeline, encoder: LabelEncoder, data: SepsisFeatures) -> Union[ErrorResponse, PredictionResponse]: | |
msg = 'Execution failed' | |
code = 0 | |
output = ErrorResponse(**{'execution_msg': msg, | |
'execution_code': code, 'error': None}) | |
try: | |
# Create dataframe | |
df = pd.DataFrame.from_dict(data.__dict__) | |
# Make prediction | |
preds = pipeline.predict(df) | |
preds_int = [int(pred) for pred in preds] | |
predictions = encoder.inverse_transform(preds_int) | |
probabilities_np = pipeline.predict_proba(df) | |
probabilities = [round(float(max(prob)*100), 2) | |
for prob in probabilities_np] | |
result = ResultData(**{"prediction": predictions, | |
"probability": probabilities}) | |
msg = 'Execution was successful' | |
code = 1 | |
output = PredictionResponse( | |
**{'execution_msg': msg, | |
'execution_code': code, 'result': result} | |
) | |
except Exception as e: | |
error = f"Omg, pipeline classifier and/or encoder failure. {e}" | |
output = ErrorResponse(**{'execution_msg': msg, | |
'execution_code': code, 'error': error}) | |
finally: | |
return output | |
# Random forest endpoint: classify sepsis with random forest | |
async def random_forest_classifier(data: SepsisFeatures) -> Union[ErrorResponse, PredictionResponse]: | |
random_forest_pipeline, encoder = await load_pipeline(RANDOM_FOREST_URL, ENCODER_URL) | |
output = await pipeline_classifier(random_forest_pipeline, encoder, data) | |
return output | |
# Xgboost endpoint: classify sepsis with xgboost | |
async def xgboost_classifier(data: SepsisFeatures) -> Union[ErrorResponse, PredictionResponse]: | |
xgboost_pipeline, encoder = await load_pipeline(XGBOOST_URL, ENCODER_URL) | |
output = await pipeline_classifier(xgboost_pipeline, encoder, data) | |
return output | |
async def query_sepsis_prediction(data: SepsisFeatures, model: str = Query('RandomForestClassifier', enum=list(ALL_MODELS.keys()))) -> Union[ErrorResponse, PredictionResponse]: | |
pipeline_url: Url = ALL_MODELS[model] | |
pipeline, encoder = await load_pipeline(pipeline_url, ENCODER_URL) | |
output = await pipeline_classifier(pipeline, encoder, data) | |
return output | |