File size: 9,072 Bytes
9c20b4e
 
 
 
 
8bf1635
2e2148b
8bf1635
74e9bb4
8bf1635
9db5d78
5c2ba64
9c20b4e
a9922ff
5c2ba64
f17c34f
672cb3f
9c20b4e
5e89640
9c20b4e
 
112bea7
dc06293
8ddd281
 
 
 
 
 
 
 
 
 
 
 
 
 
 
311d9aa
8fa13bc
 
 
 
 
 
 
 
 
5c2ba64
9c20b4e
07ea011
f136260
9c20b4e
5c2ba64
 
f17c34f
9c20b4e
 
5c2ba64
da7d0fa
f17c34f
 
 
 
 
 
 
 
 
5c2ba64
 
dc06293
 
 
f17c34f
dc06293
 
f17c34f
8fa13bc
dc06293
 
 
 
8fa13bc
 
 
dc06293
 
 
 
 
 
 
 
f17c34f
 
 
 
dc06293
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9db5d78
f17c34f
 
 
b9d657b
f17c34f
 
9db5d78
f17c34f
 
9db5d78
 
 
 
 
 
 
 
dc06293
f17c34f
 
 
5c2ba64
9c20b4e
f17c34f
 
 
 
9c20b4e
8729c75
9c20b4e
 
dc06293
9c20b4e
fb76d6c
9c20b4e
f136260
 
 
da7d0fa
 
 
9c20b4e
ffbd52c
b9d657b
 
 
9c20b4e
112bea7
8fa13bc
f17c34f
9c20b4e
 
 
5c2ba64
9c20b4e
 
5c2ba64
9c20b4e
1a8723f
 
 
 
 
 
 
 
9c20b4e
1a8723f
 
 
 
 
 
9c20b4e
 
1a8723f
5c2ba64
74e9bb4
5c2ba64
cecf748
f17c34f
 
 
 
 
8fa13bc
f17c34f
 
 
 
 
 
 
 
9c20b4e
5c2ba64
672cb3f
f17c34f
dc06293
 
 
f17c34f
2e2148b
f17c34f
 
9db5d78
f17c34f
dc06293
9db5d78
f17c34f
9db5d78
f17c34f
9db5d78
 
dc06293
8ddd281
dc06293
f17c34f
dc06293
8fa13bc
 
 
 
5c2ba64
 
f17c34f
da7d0fa
5c2ba64
3cf1f43
dc06293
8034ef8
ef28f77
 
 
 
 
f17c34f
ef28f77
f136260
f17c34f
8fa13bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef28f77
 
 
5c2ba64
 
5e89640
f17c34f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
"""
main.py
"""

# Standard library imports
import glob
import os
import time
from pathlib import Path
from tempfile import NamedTemporaryFile
from typing import List, Literal, Tuple, Optional

# Third-party imports
import gradio as gr
from loguru import logger
from pydantic import BaseModel, Field
from pypdf import PdfReader
from pydub import AudioSegment

# Local imports
from prompts import SYSTEM_PROMPT
from utils import generate_script, generate_podcast_audio, parse_url

LANGUAGE_MAPPING = {
    "English": "en",
    "Chinese": "zh",
    "French": "fr",
    "German": "de",
    "Hindi": "hi",
    "Italian": "it",
    "Japanese": "ja",
    "Korean": "ko",
    "Polish": "pl",
    "Portuguese": "pt",
    "Russian": "ru",
    "Spanish": "es",
    "Turkish": "tr"
}

MELO_TTS_LANGUAGE_MAPPING = {
    "English": "EN",
    "Spanish": "ES",
    "French": "FR",
    "Chinese": "ZJ",
    "Japanese": "JP",
    "Korean": "KR",
}

class DialogueItem(BaseModel):
    """A single dialogue item."""

    speaker: Literal["Host (Jane)", "Guest"]
    text: str


class ShortDialogue(BaseModel):
    """The dialogue between the host and guest."""

    scratchpad: str
    name_of_guest: str
    dialogue: List[DialogueItem] = Field(..., description="A list of dialogue items, typically between 5 to 9 items")


class MediumDialogue(BaseModel):
    """The dialogue between the host and guest."""

    scratchpad: str
    name_of_guest: str
    dialogue: List[DialogueItem] = Field(..., description="A list of dialogue items, typically between 8 to 13 items")


def generate_podcast(
    files: List[str],
    url: Optional[str],
    question: Optional[str],
    tone: Optional[str],
    length: Optional[str],
    language: str,
    use_advanced_audio: bool,
) -> Tuple[str, str]:
    """Generate the audio and transcript from the PDFs and/or URL."""
    text = ""

    # Check if the selected language is supported by MeloTTS when not using advanced audio
    if not use_advanced_audio and language not in MELO_TTS_LANGUAGE_MAPPING:
        raise gr.Error(f"The selected language '{language}' is not supported without advanced audio generation. Please enable advanced audio generation or choose a supported language.")

    # Check if at least one input is provided
    if not files and not url:
        raise gr.Error("Please provide at least one PDF file or a URL.")

    # Process PDFs if any
    if files:
        for file in files:
            if not file.lower().endswith(".pdf"):
                raise gr.Error(
                    f"File {file} is not a PDF. Please upload only PDF files."
                )

            try:
                with Path(file).open("rb") as f:
                    reader = PdfReader(f)
                    text += "\n\n".join([page.extract_text() for page in reader.pages])
            except Exception as e:
                raise gr.Error(f"Error reading the PDF file {file}: {str(e)}")

    # Process URL if provided
    if url:
        try:
            url_text = parse_url(url)
            text += "\n\n" + url_text
        except ValueError as e:
            raise gr.Error(str(e))

    # Check total character count
    if len(text) > 100000:
        raise gr.Error(
            "The total content is too long. Please ensure the combined text from PDFs and URL is fewer than ~100,000 characters."
        )
    

    # Modify the system prompt based on the user input
    modified_system_prompt = SYSTEM_PROMPT
    if question:
        modified_system_prompt += f"\n\PLEASE ANSWER THE FOLLOWING QN: {question}"
    if tone:
        modified_system_prompt += f"\n\nTONE: The tone of the podcast should be {tone}."
    if length:
        length_instructions = {
            "Short (1-2 min)": "Keep the podcast brief, around 1-2 minutes long.",
            "Medium (3-5 min)": "Aim for a moderate length, about 3-5 minutes.",
        }
        modified_system_prompt += f"\n\nLENGTH: {length_instructions[length]}"
    if language:
        modified_system_prompt += (
            f"\n\nOUTPUT LANGUAGE <IMPORTANT>: The the podcast should be {language}."
        )

    # Call the LLM
    if length == "Short (1-2 min)":
        llm_output = generate_script(modified_system_prompt, text, ShortDialogue)
    else:
        llm_output = generate_script(modified_system_prompt, text, MediumDialogue)
    logger.info(f"Generated dialogue: {llm_output}")

    # Process the dialogue
    audio_segments = []
    transcript = ""
    total_characters = 0

    for line in llm_output.dialogue:
        logger.info(f"Generating audio for {line.speaker}: {line.text}")
        if line.speaker == "Host (Jane)":
            speaker = f"**Jane**: {line.text}"
        else:
            speaker = f"**{llm_output.name_of_guest}**: {line.text}"
        transcript += speaker + "\n\n"
        total_characters += len(line.text)

        if not use_advanced_audio:
            LANGUAGE_MAPPING = MELO_TTS_LANGUAGE_MAPPING

        # Get audio file path
        audio_file_path = generate_podcast_audio(
            line.text, line.speaker, LANGUAGE_MAPPING[language], use_advanced_audio
        )
        # Read the audio file into an AudioSegment
        audio_segment = AudioSegment.from_file(audio_file_path)
        audio_segments.append(audio_segment)

    # Concatenate all audio segments
    combined_audio = sum(audio_segments)

    # Export the combined audio to a temporary file
    temporary_directory = "./gradio_cached_examples/tmp/"
    os.makedirs(temporary_directory, exist_ok=True)

    temporary_file = NamedTemporaryFile(
        dir=temporary_directory,
        delete=False,
        suffix=".mp3",
    )
    combined_audio.export(temporary_file.name, format="mp3")

    # Delete any files in the temp directory that end with .mp3 and are over a day old
    for file in glob.glob(f"{temporary_directory}*.mp3"):
        if os.path.isfile(file) and time.time() - os.path.getmtime(file) > 24 * 60 * 60:
            os.remove(file)

    logger.info(f"Generated {total_characters} characters of audio")

    return temporary_file.name, transcript


demo = gr.Interface(
    title="Open NotebookLM",
    description="""

<table style="border-collapse: collapse; border: none; padding: 20px;">
  <tr style="border: none;">
    <td style="border: none; vertical-align: top; padding-right: 30px; padding-left: 30px;">
      <img src="https://raw.githubusercontent.com/gabrielchua/daily-ai-papers/main/_includes/icon.png" alt="Open NotebookLM" width="120" style="margin-bottom: 10px;">
    </td>
    <td style="border: none; vertical-align: top; padding: 10px;">
      <p style="margin-bottom: 15px;"><strong>Convert</strong> your PDFs into podcasts with open-source AI models (Llama 3.1 405B and MeloTTS).</p>
      <p style="margin-top: 15px;">Note: Only the text content of the PDFs will be processed. Images and tables are not included. The total content should be no more than 100,000 characters due to the context length of Llama 3.1 405B.</p>
    </td>
  </tr>
</table>
""",
    fn=generate_podcast,
    inputs=[
        gr.File(
            label="1. πŸ“„ Upload your PDF(s)", file_types=[".pdf"], file_count="multiple"
        ),
        gr.Textbox(
            label="2. πŸ”— Paste a URL (optional)",
            placeholder="Enter a URL to include its content",
        ),
        gr.Textbox(label="3. πŸ€” Do you have a specific question or topic in mind?"),
        gr.Dropdown(
            choices=["Fun", "Formal"],
            label="4. 🎭 Choose the tone",
            value="Fun"
        ),
        gr.Dropdown(
            choices=["Short (1-2 min)", "Medium (3-5 min)"],
            label="5. ⏱️ Choose the length",
            value="Medium (3-5 min)"
        ),
        gr.Dropdown(
            choices=list(LANGUAGE_MAPPING.keys()),
            value="English",
            label="6. 🌐 Choose the language"
        ),
        gr.Checkbox(
            label="7. πŸ”„ Use advanced audio generation? (Experimental)",
            value=False
        )
    ],
    outputs=[
        gr.Audio(label="Podcast", format="mp3"),
        gr.Markdown(label="Transcript"),
    ],
    allow_flagging="never",
    api_name="generate_podcast",
    theme=gr.themes.Soft(),
    concurrency_limit=3,
    examples=[
        [
            [str(Path("examples/1310.4546v1.pdf"))],
            "",
            "Explain this paper to me like I'm 5 years old",
            "Fun",
            "Short (1-2 min)",
            "English",
            True
        ],
        [
            [],
            "https://en.wikipedia.org/wiki/Hugging_Face",
            "How did Hugging Face become so successful?",
            "Fun",
            "Short (1-2 min)",
            "English",
            False
        ],
        [
            [],
            "https://simple.wikipedia.org/wiki/Taylor_Swift",
            "Why is Taylor Swift so popular?",
            "Fun",
            "Short (1-2 min)",
            "English",
            False
        ],
    ],
    cache_examples=True,
)

if __name__ == "__main__":
    demo.launch(show_api=True)