Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,980 Bytes
40462a0 7aafe2f a30ff0a 7aafe2f a30ff0a 2e394d9 39b272a 40462a0 2e394d9 7aafe2f 2e394d9 39b272a 2e394d9 39b272a 2e394d9 39b272a 40462a0 39b272a 7aafe2f 2e394d9 a30ff0a 2e394d9 39b272a 2e394d9 39b272a 2e394d9 39b272a 2e394d9 39b272a 2e394d9 39b272a 2e394d9 39b272a 2e394d9 39b272a 2e394d9 39b272a 2e394d9 39b272a 2e394d9 b02e794 39b272a 2e394d9 b02e794 7aafe2f b02e794 9d8567b 7aafe2f 2e394d9 d4545dc 1497411 2e394d9 e55ac15 1497411 7aafe2f 2e394d9 39b272a 7aafe2f 2e394d9 7aafe2f 2e394d9 7aafe2f 2e394d9 7aafe2f 39b272a 2e394d9 39b272a 2e394d9 39b272a 7aafe2f 39b272a 2e394d9 39b272a 2e394d9 39b272a 2e394d9 39b272a 7aafe2f 2e394d9 7aafe2f 39b272a 7aafe2f 39b272a 7aafe2f 2e394d9 7aafe2f 97d3c4e 7aafe2f 39b272a 23fd89e 7aafe2f 39b272a 2e394d9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 |
import gradio as gr
import numpy as np
import random
import spaces
import torch
import time
import os
from diffusers import DiffusionPipeline
from custom_pipeline import FLUXPipelineWithIntermediateOutputs
from transformers import pipeline
# 번역 모델 설정 (CPU 사용)
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en", device="cpu")
# 상수 정의
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
DEFAULT_WIDTH = 1024
DEFAULT_HEIGHT = 1024
DEFAULT_INFERENCE_STEPS = 1
GPU_DURATION = 15 # GPU 할당 시간 축소
# 모델 설정
def setup_model():
dtype = torch.float16
pipe = FLUXPipelineWithIntermediateOutputs.from_pretrained(
"black-forest-labs/FLUX.1-schnell",
torch_dtype=dtype
).to("cuda")
return pipe
pipe = setup_model()
# 메뉴 레이블
labels = {
"Generated Image": "생성된 이미지",
"Prompt": "프롬프트",
"Enhance Image": "이미지 향상",
"Advanced Options": "고급 설정",
"Seed": "시드",
"Randomize Seed": "랜덤 시드",
"Width": "너비",
"Height": "높이",
"Inference Steps": "추론 단계",
"Inspiration Gallery": "영감 갤러리"
}
def translate_if_korean(text):
"""한글 텍스트를 영어로 안전하게 번역"""
try:
if any('\u3131' <= char <= '\u3163' or '\uac00' <= char <= '\ud7a3' for char in text):
return translator(text)[0]['translation_text']
return text
except Exception as e:
print(f"번역 오류: {e}")
return text
# 이미지 생성 함수
@spaces.GPU(duration=GPU_DURATION)
def generate_image(prompt, seed=None, width=DEFAULT_WIDTH, height=DEFAULT_HEIGHT,
randomize_seed=True, num_inference_steps=DEFAULT_INFERENCE_STEPS):
try:
# 입력값 검증
if not isinstance(seed, (int, type(None))):
seed = None
randomize_seed = True
prompt = translate_if_korean(prompt)
if seed is None or randomize_seed:
seed = random.randint(0, MAX_SEED)
# 크기 유효성 검사
width = min(max(256, width), MAX_IMAGE_SIZE)
height = min(max(256, height), MAX_IMAGE_SIZE)
generator = torch.Generator().manual_seed(seed)
start_time = time.time()
with torch.cuda.amp.autocast():
for img in pipe.generate_images(
prompt=prompt,
guidance_scale=0,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator
):
latency = f"처리 시간: {(time.time()-start_time):.2f} 초"
# CUDA 캐시 정리
if torch.cuda.is_available():
torch.cuda.empty_cache()
yield img, seed, latency
except Exception as e:
print(f"이미지 생성 오류: {e}")
yield None, seed, f"오류: {str(e)}"
# 예제 이미지 생성
def generate_example_image(prompt):
try:
return next(generate_image(prompt, randomize_seed=True))
except Exception as e:
print(f"예제 생성 오류: {e}")
return None, None, f"오류: {str(e)}"
# Example prompts
examples = [
"비너 슈니첼의 애니메이션 일러스트레이션",
"A steampunk owl wearing Victorian-era clothing and reading a mechanical book",
"A floating island made of books with waterfalls of knowledge cascading down",
"A bioluminescent forest where mushrooms glow like neon signs in a cyberpunk city",
"An ancient temple being reclaimed by nature, with robots performing archaeology",
"A cosmic coffee shop where baristas are constellations serving drinks made of stardust"
]
css = """
footer {
visibility: hidden;
}
"""
def create_snow_effect():
# CSS 스타일 정의
snow_css = """
@keyframes snowfall {
0% {
transform: translateY(-10vh) translateX(0);
opacity: 1;
}
100% {
transform: translateY(100vh) translateX(100px);
opacity: 0.3;
}
}
.snowflake {
position: fixed;
color: white;
font-size: 1.5em;
user-select: none;
z-index: 1000;
pointer-events: none;
animation: snowfall linear infinite;
}
"""
# JavaScript 코드 정의
snow_js = """
function createSnowflake() {
const snowflake = document.createElement('div');
snowflake.innerHTML = '❄';
snowflake.className = 'snowflake';
snowflake.style.left = Math.random() * 100 + 'vw';
snowflake.style.animationDuration = Math.random() * 3 + 2 + 's';
snowflake.style.opacity = Math.random();
document.body.appendChild(snowflake);
setTimeout(() => {
snowflake.remove();
}, 5000);
}
setInterval(createSnowflake, 200);
"""
# CSS와 JavaScript를 결합한 HTML
snow_html = f"""
<style>
{snow_css}
</style>
<script>
{snow_js}
</script>
"""
return gr.HTML(snow_html)
# Gradio 앱에서 사용할 때:
# with app: 아래에
# Gradio UI 구성
with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css=css) as demo:
create_snow_effect()
with gr.Column(elem_id="app-container"):
with gr.Row():
with gr.Column(scale=3):
result = gr.Image(label=labels["Generated Image"],
show_label=False,
interactive=False)
with gr.Column(scale=1):
prompt = gr.Text(
label=labels["Prompt"],
placeholder="생성하고 싶은 이미지를 설명해주세요...",
lines=3,
show_label=False,
container=False,
)
enhanceBtn = gr.Button(f"🚀 {labels['Enhance Image']}")
with gr.Column(labels["Advanced Options"]):
with gr.Row():
latency = gr.Text(show_label=False)
with gr.Row():
seed = gr.Number(
label=labels["Seed"],
value=42,
precision=0,
minimum=0,
maximum=MAX_SEED
)
randomize_seed = gr.Checkbox(
label=labels["Randomize Seed"],
value=True
)
with gr.Row():
width = gr.Slider(
label=labels["Width"],
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=DEFAULT_WIDTH
)
height = gr.Slider(
label=labels["Height"],
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=DEFAULT_HEIGHT
)
num_inference_steps = gr.Slider(
label=labels["Inference Steps"],
minimum=1,
maximum=4,
step=1,
value=DEFAULT_INFERENCE_STEPS
)
with gr.Row():
gr.Markdown(f"### 🌟 {labels['Inspiration Gallery']}")
with gr.Row():
gr.Examples(
examples=examples,
fn=generate_example_image,
inputs=[prompt],
outputs=[result, seed],
cache_examples=False
)
# 이벤트 처리
def validated_generate(*args):
try:
return next(generate_image(*args))
except Exception as e:
print(f"검증 생성 오류: {e}")
return None, args[1], f"오류: {str(e)}"
enhanceBtn.click(
fn=generate_image,
inputs=[prompt, seed, width, height],
outputs=[result, seed, latency],
show_progress="hidden",
show_api=False,
queue=False
)
gr.on(
triggers=[prompt.input, width.input, height.input, num_inference_steps.input],
fn=validated_generate,
inputs=[prompt, seed, width, height, randomize_seed, num_inference_steps],
outputs=[result, seed, latency],
show_progress="hidden",
show_api=False,
trigger_mode="always_last",
queue=False
)
if __name__ == "__main__":
demo.launch()
|