Realtime-FLUX / app.py
ginipick's picture
Update app.py
1497411 verified
raw
history blame
8.98 kB
import gradio as gr
import numpy as np
import random
import spaces
import torch
import time
import os
from diffusers import DiffusionPipeline
from custom_pipeline import FLUXPipelineWithIntermediateOutputs
from transformers import pipeline
# 번역 모델 설정 (CPU 사용)
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en", device="cpu")
# 상수 정의
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
DEFAULT_WIDTH = 1024
DEFAULT_HEIGHT = 1024
DEFAULT_INFERENCE_STEPS = 1
GPU_DURATION = 15 # GPU 할당 시간 축소
# 모델 설정
def setup_model():
dtype = torch.float16
pipe = FLUXPipelineWithIntermediateOutputs.from_pretrained(
"black-forest-labs/FLUX.1-schnell",
torch_dtype=dtype
).to("cuda")
return pipe
pipe = setup_model()
# 메뉴 레이블
labels = {
"Generated Image": "생성된 이미지",
"Prompt": "프롬프트",
"Enhance Image": "이미지 향상",
"Advanced Options": "고급 설정",
"Seed": "시드",
"Randomize Seed": "랜덤 시드",
"Width": "너비",
"Height": "높이",
"Inference Steps": "추론 단계",
"Inspiration Gallery": "영감 갤러리"
}
def translate_if_korean(text):
"""한글 텍스트를 영어로 안전하게 번역"""
try:
if any('\u3131' <= char <= '\u3163' or '\uac00' <= char <= '\ud7a3' for char in text):
return translator(text)[0]['translation_text']
return text
except Exception as e:
print(f"번역 오류: {e}")
return text
# 이미지 생성 함수
@spaces.GPU(duration=GPU_DURATION)
def generate_image(prompt, seed=None, width=DEFAULT_WIDTH, height=DEFAULT_HEIGHT,
randomize_seed=True, num_inference_steps=DEFAULT_INFERENCE_STEPS):
try:
# 입력값 검증
if not isinstance(seed, (int, type(None))):
seed = None
randomize_seed = True
prompt = translate_if_korean(prompt)
if seed is None or randomize_seed:
seed = random.randint(0, MAX_SEED)
# 크기 유효성 검사
width = min(max(256, width), MAX_IMAGE_SIZE)
height = min(max(256, height), MAX_IMAGE_SIZE)
generator = torch.Generator().manual_seed(seed)
start_time = time.time()
with torch.cuda.amp.autocast():
for img in pipe.generate_images(
prompt=prompt,
guidance_scale=0,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator
):
latency = f"처리 시간: {(time.time()-start_time):.2f} 초"
# CUDA 캐시 정리
if torch.cuda.is_available():
torch.cuda.empty_cache()
yield img, seed, latency
except Exception as e:
print(f"이미지 생성 오류: {e}")
yield None, seed, f"오류: {str(e)}"
# 예제 이미지 생성
def generate_example_image(prompt):
try:
return next(generate_image(prompt, randomize_seed=True))
except Exception as e:
print(f"예제 생성 오류: {e}")
return None, None, f"오류: {str(e)}"
# Example prompts
examples = [
"비너 슈니첼의 애니메이션 일러스트레이션",
"A steampunk owl wearing Victorian-era clothing and reading a mechanical book",
"A floating island made of books with waterfalls of knowledge cascading down",
"A bioluminescent forest where mushrooms glow like neon signs in a cyberpunk city",
"An ancient temple being reclaimed by nature, with robots performing archaeology",
"A cosmic coffee shop where baristas are constellations serving drinks made of stardust"
]
css = """
footer {
visibility: hidden;
}
"""
def create_snow_effect():
# CSS 스타일 정의
snow_css = """
@keyframes snowfall {
0% {
transform: translateY(-10vh) translateX(0);
opacity: 1;
}
100% {
transform: translateY(100vh) translateX(100px);
opacity: 0.3;
}
}
.snowflake {
position: fixed;
color: white;
font-size: 1.5em;
user-select: none;
z-index: 1000;
pointer-events: none;
animation: snowfall linear infinite;
}
"""
# JavaScript 코드 정의
snow_js = """
function createSnowflake() {
const snowflake = document.createElement('div');
snowflake.innerHTML = '❄';
snowflake.className = 'snowflake';
snowflake.style.left = Math.random() * 100 + 'vw';
snowflake.style.animationDuration = Math.random() * 3 + 2 + 's';
snowflake.style.opacity = Math.random();
document.body.appendChild(snowflake);
setTimeout(() => {
snowflake.remove();
}, 5000);
}
setInterval(createSnowflake, 200);
"""
# CSS와 JavaScript를 결합한 HTML
snow_html = f"""
<style>
{snow_css}
</style>
<script>
{snow_js}
</script>
"""
return gr.HTML(snow_html)
# Gradio 앱에서 사용할 때:
# with app: 아래에
# Gradio UI 구성
with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css=css) as demo:
create_snow_effect()
with gr.Column(elem_id="app-container"):
with gr.Row():
with gr.Column(scale=3):
result = gr.Image(label=labels["Generated Image"],
show_label=False,
interactive=False)
with gr.Column(scale=1):
prompt = gr.Text(
label=labels["Prompt"],
placeholder="생성하고 싶은 이미지를 설명해주세요...",
lines=3,
show_label=False,
container=False,
)
enhanceBtn = gr.Button(f"🚀 {labels['Enhance Image']}")
with gr.Column(labels["Advanced Options"]):
with gr.Row():
latency = gr.Text(show_label=False)
with gr.Row():
seed = gr.Number(
label=labels["Seed"],
value=42,
precision=0,
minimum=0,
maximum=MAX_SEED
)
randomize_seed = gr.Checkbox(
label=labels["Randomize Seed"],
value=True
)
with gr.Row():
width = gr.Slider(
label=labels["Width"],
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=DEFAULT_WIDTH
)
height = gr.Slider(
label=labels["Height"],
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=DEFAULT_HEIGHT
)
num_inference_steps = gr.Slider(
label=labels["Inference Steps"],
minimum=1,
maximum=4,
step=1,
value=DEFAULT_INFERENCE_STEPS
)
with gr.Row():
gr.Markdown(f"### 🌟 {labels['Inspiration Gallery']}")
with gr.Row():
gr.Examples(
examples=examples,
fn=generate_example_image,
inputs=[prompt],
outputs=[result, seed],
cache_examples=False
)
# 이벤트 처리
def validated_generate(*args):
try:
return next(generate_image(*args))
except Exception as e:
print(f"검증 생성 오류: {e}")
return None, args[1], f"오류: {str(e)}"
enhanceBtn.click(
fn=generate_image,
inputs=[prompt, seed, width, height],
outputs=[result, seed, latency],
show_progress="hidden",
show_api=False,
queue=False
)
gr.on(
triggers=[prompt.input, width.input, height.input, num_inference_steps.input],
fn=validated_generate,
inputs=[prompt, seed, width, height, randomize_seed, num_inference_steps],
outputs=[result, seed, latency],
show_progress="hidden",
show_api=False,
trigger_mode="always_last",
queue=False
)
if __name__ == "__main__":
demo.launch()