File size: 4,313 Bytes
5a8a0ea b4a6b00 b444daa 5a8a0ea b444daa a4839f9 b444daa 5a8a0ea b444daa 5a8a0ea b444daa 8694ab2 b444daa 5a8a0ea a4839f9 5a8a0ea b444daa 5a8a0ea a4839f9 5a8a0ea b444daa 9faf1b7 a4839f9 9faf1b7 5a8a0ea b444daa 5a8a0ea b444daa a4839f9 5a8a0ea b444daa a4839f9 5a8a0ea b444daa a4839f9 5a8a0ea 9faf1b7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 |
import gradio as gr
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import csv
from scipy.stats import wilcoxon
LIBRARIES = ["ALOY", "APSTUD", "CLI", "CLOV", "COMPASS", "CONFCLOUD", "CONFSERVER", "DAEMON", "DM", "DNN", "DURACLOUD", "EVG", "FAB",
"MDL", "MESOS" ,"MULE", "NEXUS", "SERVER", "STL", "TIDOC", "TIMOB", "TISTUD", "XD"]
def grafico(list_output_MbR, list_output_NEOSP, nome_projeto, pip_choices):
list_results = [["MbR Regressor", np.mean(list_output_MbR)], ["NEOSP-SVR Regressor", np.mean(list_output_NEOSP)]]
df = pd.DataFrame(list_results, columns=["Model", "MAE"])
df_list_output_MbR = pd.DataFrame(list_output_MbR, columns=["MAE"])
df_list_output_NEOSP = pd.DataFrame(list_output_NEOSP, columns=["MAE"])
fig, (ax1, ax2, ax3)= plt.subplots(1, 3)
# ax1
ax1.set_xlabel("Index Execução")
ax1.set_ylabel("MAE")
ax1.legend()
if "MbR Regressor" in pip_choices:
ax1.plot(df_list_output_MbR.index, df_list_output_MbR["MAE"], label="MbR Regressor", color="red", alpha=0.5)
if "NEOSP-SVR Regressor" in pip_choices:
ax1.plot(df_list_output_NEOSP.index, df_list_output_NEOSP["MAE"], label="NEOSP-SVR Regressor", color="blue", alpha=0.5)
# ax2
ax2.set_ylabel("MAE Médio")
ax2.set_xlabel("Modelos")
if "MbR Regressor" in pip_choices:
graf1 = ax2.bar(df["Model"].iloc[[0]], df["MAE"].iloc[[0]], color="red", alpha=0.5)
ax2.bar_label(graf1, fmt="%.01f", size=10, label_type="edge")
if "NEOSP-SVR Regressor" in pip_choices:
graf2 = ax2.bar(df["Model"].iloc[[1]], df["MAE"].iloc[[1]], color = "blue", alpha=0.5)
ax2.bar_label(graf2, fmt="%.01f", size=10, label_type="edge")
ax3.set_xlabel("MAE")
ax3.set_ylabel("Frequência")
if "MbR Regressor" in pip_choices:
ax3.hist(df_list_output_MbR["MAE"], color="red", alpha=0.5)
if "NEOSP-SVR Regressor" in pip_choices:
ax3.hist(df_list_output_NEOSP["MAE"], color="blue", alpha=0.5)
# graficos geral
fig.set_figwidth(15)
fig.set_figheight(4)
fig.suptitle("Projeto {}".format(nome_projeto))
# text
resultado = ""
if ("MbR Regressor" and "NEOSP-SVR Regressor") in pip_choices:
res = wilcoxon(list_output_MbR, list_output_NEOSP)
resultado = "MbR vs. NEOSP-SVR -> Wilcoxon -> Statistics: {} | valor-p: {}".format(res.statistic, res.pvalue)
return gr.update(value=plt, visible=True), gr.update(value=resultado, visible=True)
def create_pip_plot(libraries, pip_choices):
nome_projeto = libraries
list_output_MbR = []
with open("metricas_{}_MbR.csv".format(nome_projeto), "r") as arquivo:
arquivo_csv = csv.reader(arquivo)
for i, linha in enumerate(arquivo_csv):
list_output_MbR.append(float(linha[0]))
list_output_NEOSP_SVR = []
with open("metricas_{}_NEOSP_SVR.csv".format(nome_projeto), "r") as arquivo:
arquivo_csv = csv.reader(arquivo)
for i, linha in enumerate(arquivo_csv):
list_output_NEOSP_SVR.append(float(linha[0]))
return grafico(list_output_MbR, list_output_NEOSP_SVR, nome_projeto, pip_choices)
demo = gr.Blocks()
with demo:
with gr.Row():
with gr.Column():
gr.Markdown("## Conjunto de Dados")
libraries = gr.Dropdown(choices=LIBRARIES, label="Projeto", value="ALOY")
with gr.Column():
gr.Markdown("## Gráficos")
pip = gr.CheckboxGroup(choices=["MbR Regressor", "NEOSP-SVR Regressor"], label="Modelos Preditivos")
# stars = gr.CheckboxGroup(choices=["Stars", "Week over Week"], label="")
# issues = gr.CheckboxGroup(choices=["Issue", "Exclude org members", "week over week"], label="")
with gr.Row():
fetch = gr.Button(value="Fetch")
with gr.Row():
with gr.Column():
pip_plot = gr.Plot(visible=False)
star_plot = gr.Text(visible=False)
# issue_plot = gr.Plot(visible=False)
fetch.click(create_pip_plot, inputs=[libraries, pip], outputs=[pip_plot, star_plot])
#fetch.click(create_star_plot, inputs=[libraries, pip], outputs=star_plot)
# fetch.click(create_issue_plot, inputs=[libraries, issues], outputs=issue_plot)
demo.launch() |