File size: 6,597 Bytes
0edd51d
 
 
b29dae5
59190de
c8487d0
0edd51d
59190de
0edd51d
 
89539f7
 
0edd51d
 
 
 
 
 
59190de
 
 
 
 
 
 
 
 
 
 
 
89539f7
 
86d8a3a
89539f7
 
 
 
 
 
 
d8fa9a9
 
89539f7
9fa7e53
35efd64
86d8a3a
 
 
3423af0
59190de
86d8a3a
59190de
86d8a3a
 
59190de
86d8a3a
 
59190de
 
 
 
 
 
 
 
5298720
59190de
9fa7e53
59190de
0edd51d
 
 
6e8bbc8
 
 
0edd51d
 
89539f7
0edd51d
f864b44
0edd51d
86d8a3a
89539f7
0edd51d
 
89539f7
0edd51d
 
89539f7
 
 
86d8a3a
 
89539f7
f864b44
89539f7
ea5b528
1aebf94
f864b44
86d8a3a
 
f864b44
86d8a3a
 
 
f864b44
89539f7
 
 
 
 
 
 
 
f864b44
 
89539f7
f864b44
 
 
 
0edd51d
f864b44
89539f7
f864b44
 
 
 
0edd51d
89539f7
f864b44
89539f7
 
 
 
 
 
 
f864b44
89539f7
f864b44
 
 
d8fa9a9
89539f7
f864b44
 
89539f7
f864b44
 
 
89539f7
 
f864b44
89539f7
f864b44
 
 
d8fa9a9
89539f7
9fa7e53
 
 
 
 
 
 
0edd51d
89539f7
 
 
 
 
 
0edd51d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59bd43d
 
 
86d8a3a
59bd43d
 
 
0edd51d
 
 
 
 
 
 
59bd43d
 
86d8a3a
59bd43d
 
 
 
 
 
 
 
 
 
9fa7e53
59bd43d
0edd51d
89539f7
0edd51d
89539f7
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
import os
import random
import gradio as gr
from PIL import Image
from gradio_client import Client
import numpy as np

DESCRIPTION = "# SDXL Pixelart"

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "1024"))
ENABLE_REFINER = os.getenv("ENABLE_REFINER", "1") == "1"

def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    return seed

def pixelate(input_file_path, pixel_size):
    image = Image.open(input_file_path)
    image = image.resize(
        (image.size[0] // pixel_size, image.size[1] // pixel_size),
        Image.NEAREST
    )
    image = image.resize(
        (image.size[0] * pixel_size, image.size[1] * pixel_size),
        Image.NEAREST
    )
    return image

def generate(
    prompt: str,
    additional_prompt: str = "",
    negative_prompt: str = "",
    use_negative_prompt: bool = False,
    seed: int = 0,
    width: int = 1024,
    height: int = 1024,
    guidance_scale_base: float = 5.0,
    guidance_scale_refiner: float = 5.0,
    num_inference_steps_base: int = 25,
    num_inference_steps_refiner: int = 25,
    apply_refiner: bool = False,
    pixel_size: int = 16
):
    if additional_prompt != "":
        additional_prompt += ", "
    
    client = Client("hysts/SDXL")
    result = client.predict(
        prompt=additional_prompt+prompt,
        negative_prompt=negative_prompt,
        prompt_2="",
        negative_prompt_2="",
        use_negative_prompt=use_negative_prompt,
        use_prompt_2=False,
        use_negative_prompt_2=False,
        seed=seed,
        width=width,
        height=height,
        guidance_scale_base=guidance_scale_base,
        guidance_scale_refiner=guidance_scale_refiner,
        num_inference_steps_base=num_inference_steps_base,
        num_inference_steps_refiner=num_inference_steps_refiner,
        apply_refiner=apply_refiner,
        api_name="/run",
    )
    image = pixelate(result, pixel_size)
    return image


examples = [
    "Astronaut in a jungle, cold color palette, muted colors, detailed, 8-bit",
    "An astronaut riding a green horse, pixel art",
    "City of Tokyo at night, retro, pixel art",
]

with gr.Blocks(css="style.css") as demo:
    gr.Markdown(DESCRIPTION)
    with gr.Group():
        with gr.Row():
            prompt = gr.Textbox(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )
            run_button = gr.Button("Run", scale=0)
        result = gr.Image(label="Result", show_label=False)
    with gr.Accordion("Advanced options", open=False):
        use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True)
        negative_prompt = gr.Textbox(
            label="Negative prompt",
            max_lines=1,
            placeholder="Enter a negative prompt",
            visible=True,
            value="(deformed eyes, nose, ears, nose), bad anatomy, ugly",
        )
        additional_prompt = gr.Textbox(
            label="Additional prompt",
            max_lines=1,
            placeholder="Enter an additional prompt",
            visible=True,
            value="((pixelart)), ((retro illustration)), bit games, 8-bit illustration, pixelated",
        )
        seed = gr.Slider(
            label="Seed",
            minimum=0,
            maximum=MAX_SEED,
            step=1,
            value=0,
        )
        randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
        with gr.Row():
            width = gr.Slider(
                label="Width",
                minimum=256,
                maximum=MAX_IMAGE_SIZE,
                step=32,
                value=1024,
            )
            height = gr.Slider(
                label="Height",
                minimum=256,
                maximum=MAX_IMAGE_SIZE,
                step=32,
                value=1024,
            )
        apply_refiner = gr.Checkbox(label="Apply refiner", value=False, visible=ENABLE_REFINER)
        with gr.Row():
            guidance_scale_base = gr.Slider(
                label="Guidance scale for base",
                minimum=1,
                maximum=20,
                step=0.1,
                value=5.0,
            )
            num_inference_steps_base = gr.Slider(
                label="Number of inference steps for base",
                minimum=10,
                maximum=100,
                step=1,
                value=25,
            )
        with gr.Row(visible=False) as refiner_params:
            guidance_scale_refiner = gr.Slider(
                label="Guidance scale for refiner",
                minimum=1,
                maximum=20,
                step=0.1,
                value=5.0,
            )
            num_inference_steps_refiner = gr.Slider(
                label="Number of inference steps for refiner",
                minimum=10,
                maximum=100,
                step=1,
                value=25,
            )
        pixel_size = gr.Slider(
            label="Pixel size",
            minimum=1,
            maximum=64,
            step=1,
            value=16,
        )

    gr.Examples(
        examples=examples,
        inputs=prompt,
        outputs=result,
        fn=generate,
    )
    use_negative_prompt.change(
        fn=lambda x: gr.update(visible=x),
        inputs=use_negative_prompt,
        outputs=negative_prompt,
        queue=False,
        api_name=False,
    )
    apply_refiner.change(
        fn=lambda x: gr.update(visible=x),
        inputs=apply_refiner,
        outputs=refiner_params,
        queue=False,
        api_name=False,
    )

    gr.on(
        triggers=[
            prompt.submit,
            additional_prompt.submit,
            negative_prompt.submit,
            run_button.click,
        ],
        fn=randomize_seed_fn,
        inputs=[seed, randomize_seed],
        outputs=seed,
        queue=False,
        api_name=False,
    ).then(
        fn=generate,
        inputs=[
            prompt,
            additional_prompt,
            negative_prompt,
            use_negative_prompt,
            seed,
            width,
            height,
            guidance_scale_base,
            guidance_scale_refiner,
            num_inference_steps_base,
            num_inference_steps_refiner,
            apply_refiner,
            pixel_size
        ],
        outputs=result,
        api_name="run",
    )

if __name__ == "__main__":
    demo.queue(max_size=20).launch()