Spaces:
Runtime error
Runtime error
File size: 6,597 Bytes
0edd51d b29dae5 59190de c8487d0 0edd51d 59190de 0edd51d 89539f7 0edd51d 59190de 89539f7 86d8a3a 89539f7 d8fa9a9 89539f7 9fa7e53 35efd64 86d8a3a 3423af0 59190de 86d8a3a 59190de 86d8a3a 59190de 86d8a3a 59190de 5298720 59190de 9fa7e53 59190de 0edd51d 6e8bbc8 0edd51d 89539f7 0edd51d f864b44 0edd51d 86d8a3a 89539f7 0edd51d 89539f7 0edd51d 89539f7 86d8a3a 89539f7 f864b44 89539f7 ea5b528 1aebf94 f864b44 86d8a3a f864b44 86d8a3a f864b44 89539f7 f864b44 89539f7 f864b44 0edd51d f864b44 89539f7 f864b44 0edd51d 89539f7 f864b44 89539f7 f864b44 89539f7 f864b44 d8fa9a9 89539f7 f864b44 89539f7 f864b44 89539f7 f864b44 89539f7 f864b44 d8fa9a9 89539f7 9fa7e53 0edd51d 89539f7 0edd51d 59bd43d 86d8a3a 59bd43d 0edd51d 59bd43d 86d8a3a 59bd43d 9fa7e53 59bd43d 0edd51d 89539f7 0edd51d 89539f7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 |
import os
import random
import gradio as gr
from PIL import Image
from gradio_client import Client
import numpy as np
DESCRIPTION = "# SDXL Pixelart"
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "1024"))
ENABLE_REFINER = os.getenv("ENABLE_REFINER", "1") == "1"
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
def pixelate(input_file_path, pixel_size):
image = Image.open(input_file_path)
image = image.resize(
(image.size[0] // pixel_size, image.size[1] // pixel_size),
Image.NEAREST
)
image = image.resize(
(image.size[0] * pixel_size, image.size[1] * pixel_size),
Image.NEAREST
)
return image
def generate(
prompt: str,
additional_prompt: str = "",
negative_prompt: str = "",
use_negative_prompt: bool = False,
seed: int = 0,
width: int = 1024,
height: int = 1024,
guidance_scale_base: float = 5.0,
guidance_scale_refiner: float = 5.0,
num_inference_steps_base: int = 25,
num_inference_steps_refiner: int = 25,
apply_refiner: bool = False,
pixel_size: int = 16
):
if additional_prompt != "":
additional_prompt += ", "
client = Client("hysts/SDXL")
result = client.predict(
prompt=additional_prompt+prompt,
negative_prompt=negative_prompt,
prompt_2="",
negative_prompt_2="",
use_negative_prompt=use_negative_prompt,
use_prompt_2=False,
use_negative_prompt_2=False,
seed=seed,
width=width,
height=height,
guidance_scale_base=guidance_scale_base,
guidance_scale_refiner=guidance_scale_refiner,
num_inference_steps_base=num_inference_steps_base,
num_inference_steps_refiner=num_inference_steps_refiner,
apply_refiner=apply_refiner,
api_name="/run",
)
image = pixelate(result, pixel_size)
return image
examples = [
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8-bit",
"An astronaut riding a green horse, pixel art",
"City of Tokyo at night, retro, pixel art",
]
with gr.Blocks(css="style.css") as demo:
gr.Markdown(DESCRIPTION)
with gr.Group():
with gr.Row():
prompt = gr.Textbox(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced options", open=False):
use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True)
negative_prompt = gr.Textbox(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
visible=True,
value="(deformed eyes, nose, ears, nose), bad anatomy, ugly",
)
additional_prompt = gr.Textbox(
label="Additional prompt",
max_lines=1,
placeholder="Enter an additional prompt",
visible=True,
value="((pixelart)), ((retro illustration)), bit games, 8-bit illustration, pixelated",
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
apply_refiner = gr.Checkbox(label="Apply refiner", value=False, visible=ENABLE_REFINER)
with gr.Row():
guidance_scale_base = gr.Slider(
label="Guidance scale for base",
minimum=1,
maximum=20,
step=0.1,
value=5.0,
)
num_inference_steps_base = gr.Slider(
label="Number of inference steps for base",
minimum=10,
maximum=100,
step=1,
value=25,
)
with gr.Row(visible=False) as refiner_params:
guidance_scale_refiner = gr.Slider(
label="Guidance scale for refiner",
minimum=1,
maximum=20,
step=0.1,
value=5.0,
)
num_inference_steps_refiner = gr.Slider(
label="Number of inference steps for refiner",
minimum=10,
maximum=100,
step=1,
value=25,
)
pixel_size = gr.Slider(
label="Pixel size",
minimum=1,
maximum=64,
step=1,
value=16,
)
gr.Examples(
examples=examples,
inputs=prompt,
outputs=result,
fn=generate,
)
use_negative_prompt.change(
fn=lambda x: gr.update(visible=x),
inputs=use_negative_prompt,
outputs=negative_prompt,
queue=False,
api_name=False,
)
apply_refiner.change(
fn=lambda x: gr.update(visible=x),
inputs=apply_refiner,
outputs=refiner_params,
queue=False,
api_name=False,
)
gr.on(
triggers=[
prompt.submit,
additional_prompt.submit,
negative_prompt.submit,
run_button.click,
],
fn=randomize_seed_fn,
inputs=[seed, randomize_seed],
outputs=seed,
queue=False,
api_name=False,
).then(
fn=generate,
inputs=[
prompt,
additional_prompt,
negative_prompt,
use_negative_prompt,
seed,
width,
height,
guidance_scale_base,
guidance_scale_refiner,
num_inference_steps_base,
num_inference_steps_refiner,
apply_refiner,
pixel_size
],
outputs=result,
api_name="run",
)
if __name__ == "__main__":
demo.queue(max_size=20).launch()
|