sdxl-pixelart / app.py
gsbm's picture
Update app.py
6e8bbc8 verified
import os
import random
import gradio as gr
from PIL import Image
from gradio_client import Client
import numpy as np
DESCRIPTION = "# SDXL Pixelart"
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "1024"))
ENABLE_REFINER = os.getenv("ENABLE_REFINER", "1") == "1"
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
def pixelate(input_file_path, pixel_size):
image = Image.open(input_file_path)
image = image.resize(
(image.size[0] // pixel_size, image.size[1] // pixel_size),
Image.NEAREST
)
image = image.resize(
(image.size[0] * pixel_size, image.size[1] * pixel_size),
Image.NEAREST
)
return image
def generate(
prompt: str,
additional_prompt: str = "",
negative_prompt: str = "",
use_negative_prompt: bool = False,
seed: int = 0,
width: int = 1024,
height: int = 1024,
guidance_scale_base: float = 5.0,
guidance_scale_refiner: float = 5.0,
num_inference_steps_base: int = 25,
num_inference_steps_refiner: int = 25,
apply_refiner: bool = False,
pixel_size: int = 16
):
if additional_prompt != "":
additional_prompt += ", "
client = Client("hysts/SDXL")
result = client.predict(
prompt=additional_prompt+prompt,
negative_prompt=negative_prompt,
prompt_2="",
negative_prompt_2="",
use_negative_prompt=use_negative_prompt,
use_prompt_2=False,
use_negative_prompt_2=False,
seed=seed,
width=width,
height=height,
guidance_scale_base=guidance_scale_base,
guidance_scale_refiner=guidance_scale_refiner,
num_inference_steps_base=num_inference_steps_base,
num_inference_steps_refiner=num_inference_steps_refiner,
apply_refiner=apply_refiner,
api_name="/run",
)
image = pixelate(result, pixel_size)
return image
examples = [
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8-bit",
"An astronaut riding a green horse, pixel art",
"City of Tokyo at night, retro, pixel art",
]
with gr.Blocks(css="style.css") as demo:
gr.Markdown(DESCRIPTION)
with gr.Group():
with gr.Row():
prompt = gr.Textbox(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced options", open=False):
use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True)
negative_prompt = gr.Textbox(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
visible=True,
value="(deformed eyes, nose, ears, nose), bad anatomy, ugly",
)
additional_prompt = gr.Textbox(
label="Additional prompt",
max_lines=1,
placeholder="Enter an additional prompt",
visible=True,
value="((pixelart)), ((retro illustration)), bit games, 8-bit illustration, pixelated",
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
apply_refiner = gr.Checkbox(label="Apply refiner", value=False, visible=ENABLE_REFINER)
with gr.Row():
guidance_scale_base = gr.Slider(
label="Guidance scale for base",
minimum=1,
maximum=20,
step=0.1,
value=5.0,
)
num_inference_steps_base = gr.Slider(
label="Number of inference steps for base",
minimum=10,
maximum=100,
step=1,
value=25,
)
with gr.Row(visible=False) as refiner_params:
guidance_scale_refiner = gr.Slider(
label="Guidance scale for refiner",
minimum=1,
maximum=20,
step=0.1,
value=5.0,
)
num_inference_steps_refiner = gr.Slider(
label="Number of inference steps for refiner",
minimum=10,
maximum=100,
step=1,
value=25,
)
pixel_size = gr.Slider(
label="Pixel size",
minimum=1,
maximum=64,
step=1,
value=16,
)
gr.Examples(
examples=examples,
inputs=prompt,
outputs=result,
fn=generate,
)
use_negative_prompt.change(
fn=lambda x: gr.update(visible=x),
inputs=use_negative_prompt,
outputs=negative_prompt,
queue=False,
api_name=False,
)
apply_refiner.change(
fn=lambda x: gr.update(visible=x),
inputs=apply_refiner,
outputs=refiner_params,
queue=False,
api_name=False,
)
gr.on(
triggers=[
prompt.submit,
additional_prompt.submit,
negative_prompt.submit,
run_button.click,
],
fn=randomize_seed_fn,
inputs=[seed, randomize_seed],
outputs=seed,
queue=False,
api_name=False,
).then(
fn=generate,
inputs=[
prompt,
additional_prompt,
negative_prompt,
use_negative_prompt,
seed,
width,
height,
guidance_scale_base,
guidance_scale_refiner,
num_inference_steps_base,
num_inference_steps_refiner,
apply_refiner,
pixel_size
],
outputs=result,
api_name="run",
)
if __name__ == "__main__":
demo.queue(max_size=20).launch()