File size: 14,147 Bytes
1266fc8
 
 
 
 
 
 
 
 
 
 
ff16f65
1266fc8
e597aa5
1266fc8
 
 
ff16f65
 
 
 
1266fc8
ff16f65
 
 
 
 
 
e597aa5
 
1266fc8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
653be31
1266fc8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2b1a056
 
 
 
 
 
 
 
 
 
 
 
 
1266fc8
 
 
 
 
 
 
 
e597aa5
1266fc8
e597aa5
ce4e9d2
e597aa5
 
1266fc8
e597aa5
 
 
 
 
 
 
 
 
 
 
 
1266fc8
e597aa5
 
 
 
 
 
 
1266fc8
 
e597aa5
 
 
 
 
1266fc8
e597aa5
 
 
 
 
 
1266fc8
e597aa5
 
 
 
1266fc8
e597aa5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1266fc8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2b1a056
 
 
 
 
 
 
 
 
 
 
 
 
1266fc8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e597aa5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
import numpy as np
import pandas as pd
from ultralytics import YOLO
import streamlit as st
import cv2
import base64
import time
import shutil
import os
from PIL import Image
import base64
import random


st.set_page_config(layout="wide",initial_sidebar_state="expanded",
                   page_icon='πŸ”Ž',page_title='Poth-Hole Detector')

image_directory = "val"  # Assuming "val" is the directory name

# Get a list of image filenames in the directory
image_filenames = [filename for filename in os.listdir(image_directory) if filename.endswith(".jpg")]

# Function to generate a random image from the list of filenames
def get_random_image():
    if not image_filenames:
        return None
    random_image_filename = random.choice(image_filenames)
    random_image_path = os.path.join(image_directory, random_image_filename)
    return random_image_path      

def get_video_base64(video_path):
    with open(video_path, "rb") as file:
        video_bytes = file.read()
        base64_encoded = base64.b64encode(video_bytes).decode("utf-8")
        return base64_encoded

video_path = "deep1.mp4"
video_base64 = get_video_base64(video_path)

video_html = f"""
	<style>
	#myVideo {{
		position: fixed;
		right: 0;
		bottom: 0;
		min-width: 100%; 
		min-height: 100%;
	}}
	.content {{
		position: fixed;
		bottom: 0;
		background: rgba(0, 0, 0, 0.5);
		color: #f1f1f1;
		width: 100%;
		padding: 20px;
	}}

	</style>

	<video autoplay loop muted id="myVideo">
		<source type="video/mp4" src="data:video/mp4;base64,{video_base64}">
	</video>
"""

st.markdown(video_html, unsafe_allow_html=True)

# Define custom style for the glowing text
glowing_text_style = '''
    <style>
        .glowing-text {
            font-family: 'Arial Black', sans-serif;
            font-size: 48px;
            text-align: center;
            animation: glowing 2s infinite;
        }
        
        @keyframes glowing {
            0% { color: #FF9933; } /* Saffron color */
            25% { color: #FFFFFF; } /* White color */
            50% { color: #128807; } /* Green color */
            75% { color: #0000FF; } /* Blue color */
            100% { color: #FF9933; } /* Saffron color */
        }
    </style>
'''

# Display the glowing text using st.markdown
st.markdown(glowing_text_style, unsafe_allow_html=True)
st.markdown(f'<p class="glowing-text">πŸ•³οΈ PothHole Detector πŸ•³οΈ</p>', unsafe_allow_html=True)

def upload():
    image=None
    image_filename=None
    initial_image = st.camera_input('Take a picture')
    original_image = initial_image
    temp_path = None
    if initial_image is not None:
        image_filename = f"{int(time.time())}.jpg"
        bytes_data = initial_image.getvalue()
        image = cv2.imdecode(np.frombuffer(bytes_data, np.uint8), cv2.IMREAD_COLOR)

    return image, original_image,image_filename

def process_line(line, image_np,counter):
    # Process a single line from the labels.txt file
    bresults = line.split()
    if len(bresults) >=5:
        names={0:'POTH_HOLE'}
        xc, yc, nw, nh = map(float, bresults[1:5])
        h, w = image_np.shape[0], image_np.shape[1]

        xc *= w
        yc *= h
        nw *= w
        nh *= h
        top_left = (int(xc - nw / 2), int(yc - nh / 2))
        bottom_right = (int(xc + nw / 2), int(yc + nh / 2))

        # Draw bounding box
        cv2.rectangle(image_np, top_left, bottom_right, (4, 29, 255), 3, cv2.LINE_4)

        # Draw label text
        #label = names[int(bresults[0])]
        label = f'{names[int(bresults[0])]}-{counter}'
        text_size = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 2, 3)[0]
        text_width, text_height = text_size
        text_x = (top_left[0] + bottom_right[0] - text_width) // 2 + 100
        text_y = top_left[1] - 10
        cv2.putText(image_np, label, (text_x, text_y), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 0), 2)
        

 
sidebar_option = st.sidebar.radio("Select an option", ("Take picture for prediction", "Upload file"))

def main():
    
    
    
    
   
    if sidebar_option == "Take picture for prediction":
        if st.checkbox('Take a picture for prediction'):
    
        
            image, original_image,image_filename= upload()
            if original_image is not None and original_image is not None and len(image_filename)!=0 and st.button('Prediction'):  # Check if original_image is not None
                st.info('Wait for the results...!')
                #image1=cv2.imread(image)
                
                counter=1
                names={0:'POTH_HOLE'
                    }
               
                model=YOLO('best.pt')
                result = model.predict(image,save=True,save_txt=True)
                txt_files_exist = any(filename.endswith('.txt') for filename in os.listdir('runs/detect/predict/labels'))
                if txt_files_exist:
                    lis=open('runs/detect/predict/labels/image0.txt','r').readlines()
                    for line in lis:
                        process_line(line, image,counter)
                        counter+=1
                    with st.spinner('Wait for the results...!'):
                        time.sleep(5)
                    
                    st.image(image,use_column_width=True)
                    st.balloons()
                    
                    try:
                        if os.path.exists('runs'):
                            shutil.rmtree('runs')
                            st.session_state.original_image = None  # Clear the original_image variable
                           
                    except Exception as e:
                        st.error(f"An error occurred: {e}")
                else:
                    st.warning('⚠️Please check your image')
                    st.info("πŸ“·βœ¨ **Encountering the 'Please check your image' error?**")
                    st.write(
                            """
                            Our algorithm may not have been able to predict the content of your image. To improve results, consider the following:

                            πŸ‘‰ **Verify image quality and resolution.**
                            πŸ‘‰ **Ensure the image is clear and well-lit.**
                            πŸ‘‰ **Check if the image meets our specified format requirements.**
                            πŸ‘‰ **Consider alternative images for better results.**

                            Our aim is to provide accurate predictions, and addressing these aspects can make a significant difference. If the issue persists, please reach out to our support team. We're here to help! πŸ€πŸ”§
                            """
                        )
                    try:
                        if os.path.exists('runs'):
                            shutil.rmtree('runs')
                            st.session_state.original_image = None  # Clear the original_image variable
                           
                    except Exception as e:
                        st.error(f"An error occurred: {e}")
    elif sidebar_option == "Upload file":  
          
        
        fileimage=st.file_uploader('Upload the file for detection πŸ“',type=['jpg','jpeg','png'])
        st.info("If you haven't filed, our system will employ a default image for prediction πŸ“. Simply press the 'Predict' button and directly upload your file for analysis 🧐.")
        
        
        if st.button('Predict'):

                    
            if True:
                    
                if fileimage is None:
                    default_image=get_random_image()
                    st.warning('⚠️ We are using random image from our backend!.')
                    st.info('Wait for the results...!')
                    counter=1
                    pic=Image.open(default_image)
                    image_np = np.array(pic)
                    names={0:'POTH_HOLE'
                        }
                    mod1=YOLO('best.pt')
                    mod1.predict(image_np,save=True,save_txt=True)
                    txt_files_exist = any(filename.endswith('.txt') for filename in os.listdir('runs/detect/predict/labels'))
                    if txt_files_exist:
                        lis=open('runs/detect/predict/labels/image0.txt','r').readlines()
                        with st.spinner('Wait for the results...!'):
                            time.sleep(5)
    
                                    
                        for line in lis:
                            process_line(line, image_np,counter)
                            counter+=1
                        col1,col2=st.columns(2)
                        with col1:
                                
                            st.info('Original Image!')
                            st.image(default_image,use_column_width=True)
                        with col2:
                            st.info('Detected Image!')
                            st.image(image_np,use_column_width=True)
                        st.balloons()
                        
                        try:
                            if os.path.exists('runs'):
                                shutil.rmtree('runs')
                                st.session_state.original_image = None  # Clear the original_image variable
                                
                        except Exception as e:
                            st.error(f"An error occurred: {e}")
                    else:
                        st.warning('⚠️Please check your image')
                        st.info("πŸ“·βœ¨ **Encountering the 'Please check your image' error?**")
                        st.write(
                            """
                            Our algorithm may not have been able to predict the content of your image. To improve results, consider the following:

                            πŸ‘‰ **Verify image quality and resolution.**
                            πŸ‘‰ **Ensure the image is clear and well-lit.**
                            πŸ‘‰ **Check if the image meets our specified format requirements.**
                            πŸ‘‰ **Consider alternative images for better results.**

                            Our aim is to provide accurate predictions, and addressing these aspects can make a significant difference. If the issue persists, please reach out to our support team. We're here to help! πŸ€πŸ”§
                            """
                        )
                        try:
                            if os.path.exists('runs'):
                                shutil.rmtree('runs')
                                st.session_state.original_image = None  # Clear the original_image variable
                            
                        except Exception as e:
                            st.error(f"An error occurred: {e}")
                else:
                    st.info('Wait for the results...!')
                    counter=1
                    pic=Image.open(fileimage)
                    image_np = np.array(pic)
                    names={0:'POTH_HOLE'
                        }
                    mod1=YOLO('best.pt')
                    mod1.predict(image_np,save=True,save_txt=True)
                    txt_files_exist = any(filename.endswith('.txt') for filename in os.listdir('runs/detect/predict/labels'))
                    if txt_files_exist:
                        lis=open('runs/detect/predict/labels/image0.txt','r').readlines()
                        with st.spinner('Wait for the results...!'):
                            time.sleep(5)
    
                                    
                        for line in lis:
                            process_line(line, image_np,counter)
                            counter+=1
                        col1,col2=st.columns(2)
                        with col1:
                                
                            st.info('Original Image!')
                            st.image(fileimage,use_column_width=True)
                        with col2:
                            st.info('Detected Image!')
                            st.image(image_np,use_column_width=True)
                        st.balloons()
                        
                        try:
                            if os.path.exists('runs'):
                                shutil.rmtree('runs')
                                st.session_state.original_image = None  # Clear the original_image variable
                                
                        except Exception as e:
                            st.error(f"An error occurred: {e}")
                    else:
                        st.warning('⚠️Please check your image')
                        st.info("πŸ“·βœ¨ **Encountering the 'Please check your image' error?**")
                        st.write(
                            """
                            Our algorithm may not have been able to predict the content of your image. To improve results, consider the following:

                            πŸ‘‰ **Verify image quality and resolution.**
                            πŸ‘‰ **Ensure the image is clear and well-lit.**
                            πŸ‘‰ **Check if the image meets our specified format requirements.**
                            πŸ‘‰ **Consider alternative images for better results.**

                            Our aim is to provide accurate predictions, and addressing these aspects can make a significant difference. If the issue persists, please reach out to our support team. We're here to help! πŸ€πŸ”§
                            """
                        )
                        try:
                            if os.path.exists('runs'):
                                shutil.rmtree('runs')
                                st.session_state.original_image = None  # Clear the original_image variable
                            
                        except Exception as e:
                            st.error(f"An error occurred: {e}")
                    

        
        
            

   
if __name__ == '__main__':
    
   
    main()