Spaces:
Sleeping
Sleeping
import numpy as np | |
import pandas as pd | |
from ultralytics import YOLO | |
import streamlit as st | |
import cv2 | |
import base64 | |
import time | |
import shutil | |
import os | |
from PIL import Image | |
import base64 | |
st.set_page_config(layout="wide",initial_sidebar_state="expanded", | |
page_icon='🔎',page_title='Poth-Hole Detector') | |
def get_video_base64(video_path): | |
with open(video_path, "rb") as file: | |
video_bytes = file.read() | |
base64_encoded = base64.b64encode(video_bytes).decode("utf-8") | |
return base64_encoded | |
video_path = "deep1.mp4" | |
video_base64 = get_video_base64(video_path) | |
video_html = f""" | |
<style> | |
#myVideo {{ | |
position: fixed; | |
right: 0; | |
bottom: 0; | |
min-width: 100%; | |
min-height: 100%; | |
}} | |
.content {{ | |
position: fixed; | |
bottom: 0; | |
background: rgba(0, 0, 0, 0.5); | |
color: #f1f1f1; | |
width: 100%; | |
padding: 20px; | |
}} | |
</style> | |
<video autoplay loop muted id="myVideo"> | |
<source type="video/mp4" src="data:video/mp4;base64,{video_base64}"> | |
</video> | |
""" | |
st.markdown(video_html, unsafe_allow_html=True) | |
# Define custom style for the glowing text | |
glowing_text_style = ''' | |
<style> | |
.glowing-text { | |
font-family: 'Arial Black', sans-serif; | |
font-size: 48px; | |
text-align: center; | |
animation: glowing 2s infinite; | |
} | |
@keyframes glowing { | |
0% { color: #FF9933; } /* Saffron color */ | |
25% { color: #FFFFFF; } /* White color */ | |
50% { color: #128807; } /* Green color */ | |
75% { color: #0000FF; } /* Blue color */ | |
100% { color: #FF9933; } /* Saffron color */ | |
} | |
</style> | |
''' | |
# Display the glowing text using st.markdown | |
st.markdown(glowing_text_style, unsafe_allow_html=True) | |
st.markdown(f'<p class="glowing-text">🕳️ PothHole Detector 🕳️</p>', unsafe_allow_html=True) | |
def upload(): | |
image=None | |
image_filename=None | |
initial_image = st.camera_input('Take a picture') | |
original_image = initial_image | |
temp_path = None | |
if initial_image is not None: | |
image_filename = f"{int(time.time())}.jpg" | |
bytes_data = initial_image.getvalue() | |
image = cv2.imdecode(np.frombuffer(bytes_data, np.uint8), cv2.IMREAD_COLOR) | |
return image, original_image,image_filename | |
def process_line(line, image_np,counter): | |
# Process a single line from the labels.txt file | |
bresults = line.split() | |
if len(bresults) >=5: | |
names={0:'POTH_HOLE'} | |
xc, yc, nw, nh = map(float, bresults[1:5]) | |
h, w = image_np.shape[0], image_np.shape[1] | |
xc *= w | |
yc *= h | |
nw *= w | |
nh *= h | |
top_left = (int(xc - nw / 2), int(yc - nh / 2)) | |
bottom_right = (int(xc + nw / 2), int(yc + nh / 2)) | |
# Draw bounding box | |
cv2.rectangle(image_np, top_left, bottom_right, (4, 29, 255), 3, cv2.LINE_4) | |
# Draw label text | |
#label = names[int(bresults[0])] | |
label = f'{names[int(bresults[0])]}-{counter}' | |
text_size = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 2, 3)[0] | |
text_width, text_height = text_size | |
text_x = (top_left[0] + bottom_right[0] - text_width) // 2 + 100 | |
text_y = top_left[1] - 10 | |
cv2.putText(image_np, label, (text_x, text_y), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 0), 2) | |
sidebar_option = st.sidebar.radio("Select an option", ("Take picture for prediction", "Upload file")) | |
def main(): | |
if sidebar_option == "Take picture for prediction": | |
if st.checkbox('Take a picture for prediction'): | |
image, original_image,image_filename= upload() | |
if original_image is not None and original_image is not None and len(image_filename)!=0 and st.button('Prediction'): # Check if original_image is not None | |
st.info('Wait for the results...!') | |
#image1=cv2.imread(image) | |
counter=1 | |
names={0:'POTH_HOLE' | |
} | |
model=YOLO('best.pt') | |
result = model.predict(image,save=True,save_txt=True) | |
txt_files_exist = any(filename.endswith('.txt') for filename in os.listdir('runs/detect/predict/labels')) | |
if txt_files_exist: | |
lis=open('runs/detect/predict/labels/image0.txt','r').readlines() | |
for line in lis: | |
process_line(line, image_np,counter) | |
counter+=1 | |
with st.spinner('Wait for the results...!'): | |
time.sleep(5) | |
st.image(image,use_column_width=True) | |
st.balloons() | |
try: | |
if os.path.exists('runs'): | |
shutil.rmtree('runs') | |
st.session_state.original_image = None # Clear the original_image variable | |
except Exception as e: | |
st.error(f"An error occurred: {e}") | |
else: | |
st.warning('⚠️Please check your image') | |
try: | |
if os.path.exists('runs'): | |
shutil.rmtree('runs') | |
st.session_state.original_image = None # Clear the original_image variable | |
except Exception as e: | |
st.error(f"An error occurred: {e}") | |
elif sidebar_option == "Upload file": | |
fileimage=st.file_uploader('Upload the file for detection 📁',type=['jpg']) | |
if st.button('Predict'): | |
if fileimage is None: | |
st.warning('🛎️We are using default image 📷') | |
counter=1 | |
default_image_path='df.jpg' | |
pic = Image.open(default_image_path) | |
image_np = np.array(pic) | |
names={0:'POTH_HOLE' | |
} | |
mod1=YOLO('best.pt') | |
mod1.predict(image_np,save=True,save_txt=True) | |
txt_files_exist = any(filename.endswith('.txt') for filename in os.listdir('runs/detect/predict/labels')) | |
if txt_files_exist: | |
lis=open('runs/detect/predict/labels/image0.txt','r').readlines() | |
with st.spinner('Wait for the results...!'): | |
time.sleep(5) | |
for line in lis: | |
process_line(line, image_np,counter) | |
counter+=1 | |
col1,col2=st.columns(2) | |
with col1: | |
st.info('Original Image!') | |
st.image(default_image_path,use_column_width=True) | |
with col2: | |
st.info('Detected Image!') | |
st.image(image_np,use_column_width=True) | |
st.balloons() | |
try: | |
if os.path.exists('runs'): | |
shutil.rmtree('runs') | |
st.session_state.original_image = None # Clear the original_image variable | |
except Exception as e: | |
st.error(f"An error occurred: {e}") | |
else: | |
if fileimage is not None and not fileimage.name.endswith('.jpg'): | |
st.warning('⚠️ Please upload only JPG images.') | |
else: | |
st.info('Wait for the results...!') | |
counter=1 | |
pic=Image.open(fileimage) | |
image_np = np.array(pic) | |
names={0:'POTH_HOLE' | |
} | |
mod1=YOLO('best.pt') | |
mod1.predict(image_np,save=True,save_txt=True) | |
txt_files_exist = any(filename.endswith('.txt') for filename in os.listdir('runs/detect/predict/labels')) | |
if txt_files_exist: | |
lis=open('runs/detect/predict/labels/image0.txt','r').readlines() | |
with st.spinner('Wait for the results...!'): | |
time.sleep(5) | |
for line in lis: | |
process_line(line, image_np,counter) | |
counter+=1 | |
col1,col2=st.columns(2) | |
with col1: | |
st.info('Original Image!') | |
st.image(fileimage,use_column_width=True) | |
with col2: | |
st.info('Detected Image!') | |
st.image(image_np,use_column_width=True) | |
st.balloons() | |
try: | |
if os.path.exists('runs'): | |
shutil.rmtree('runs') | |
st.session_state.original_image = None # Clear the original_image variable | |
except Exception as e: | |
st.error(f"An error occurred: {e}") | |
else: | |
st.warning('⚠️Please check your image') | |
try: | |
if os.path.exists('runs'): | |
shutil.rmtree('runs') | |
st.session_state.original_image = None # Clear the original_image variable | |
except Exception as e: | |
st.error(f"An error occurred: {e}") | |
if __name__ == '__main__': | |
main() | |