LucidDreamer / gradio_demo.py
haodongli's picture
Update gradio_demo.py
784e893
raw
history blame
5.36 kB
import gradio as gr
import numpy as np
import os
try:
from train import *
print('==> simple-knn & diff-gaussian-rasterization already installed!')
except:
print('==> simple-knn & diff-gaussian-rasterization are NOT installed!')
# https://github.com/pytorch/extension-cpp/issues/71
os.environ["TORCH_CUDA_ARCH_LIST"] = "3.5;5.0;6.0;6.1;7.0;7.5;8.0;8.6+PTX"
print('==> TORCH_CUDA_ARCH_LIST =', os.environ.get('TORCH_CUDA_ARCH_LIST'))
os.system("python -m pip install git+https://github.com/YixunLiang/simple-knn.git")
print('==> simple-knn installed!')
os.system("python -m pip install git+https://github.com/YixunLiang/diff-gaussian-rasterization.git")
print('==> diff-gaussian-rasterization installed!')
from train import *
example_inputs = [[
"A DSLR photo of a Rugged, vintage-inspired hiking boots with a weathered leather finish, best quality, 4K, HD.",
"Rugged, vintage-inspired hiking boots with a weathered leather finish."
], [
"a DSLR photo of a Cream Cheese Donut.",
"a Donut."
], [
"A durian, 8k, HDR.",
"A durian"
], [
"A pillow with huskies printed on it",
"A pillow"
], [
"A DSLR photo of a wooden car, super detailed, best quality, 4K, HD.",
"a wooden car."
]]
example_outputs_1 = [
gr.Video(value=os.path.join(os.path.dirname(__file__), 'example/boots.mp4'), autoplay=True),
gr.Video(value=os.path.join(os.path.dirname(__file__), 'example/Donut.mp4'), autoplay=True),
gr.Video(value=os.path.join(os.path.dirname(__file__), 'example/durian.mp4'), autoplay=True),
gr.Video(value=os.path.join(os.path.dirname(__file__), 'example/pillow_huskies.mp4'), autoplay=True),
gr.Video(value=os.path.join(os.path.dirname(__file__), 'example/wooden_car.mp4'), autoplay=True)
]
example_outputs_2 = [
gr.Video(value=os.path.join(os.path.dirname(__file__), 'example/boots_pro.mp4'), autoplay=True),
gr.Video(value=os.path.join(os.path.dirname(__file__), 'example/Donut_pro.mp4'), autoplay=True),
gr.Video(value=os.path.join(os.path.dirname(__file__), 'example/durian_pro.mp4'), autoplay=True),
gr.Video(value=os.path.join(os.path.dirname(__file__), 'example/pillow_huskies_pro.mp4'), autoplay=True),
gr.Video(value=os.path.join(os.path.dirname(__file__), 'example/wooden_car_pro.mp4'), autoplay=True)
]
def main(prompt, init_prompt, negative_prompt, num_iter, CFG, seed):
if [prompt, init_prompt] in example_inputs:
return example_outputs_1[example_inputs.index([prompt, init_prompt])], example_outputs_2[example_inputs.index([prompt, init_prompt])]
args, lp, op, pp, gcp, gp = args_parser(default_opt=os.path.join(os.path.dirname(__file__), 'configs/white_hair_ironman.yaml'))
gp.text = prompt
gp.negative = negative_prompt
if len(init_prompt) > 1:
gcp.init_shape = 'pointe'
gcp.init_prompt = init_prompt
else:
gcp.init_shape = 'sphere'
gcp.init_prompt = '.'
op.iterations = num_iter
gp.guidance_scale = CFG
gp.noise_seed = int(seed)
print('==> User Prompt:', gp.text)
if os.environ.get('QUEUE_1') != "True":
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
os.environ['QUEUE_1'] = "True"
lp.workspace = 'gradio_demo_1'
video_path, pro_video_path = start_training(args, lp, op, pp, gcp, gp)
os.environ['QUEUE_1'] = "False"
else:
os.environ["CUDA_VISIBLE_DEVICES"] = "1"
lp.workspace = 'gradio_demo_2'
video_path, pro_video_path = start_training(args, lp, op, pp, gcp, gp)
return gr.Video(value=video_path, autoplay=True), gr.Video(value=pro_video_path, autoplay=True)
with gr.Blocks() as demo:
gr.Markdown("# <center>LucidDreamer: Towards High-Fidelity Text-to-3D Generation via Interval Score Matching</center>")
gr.Markdown("This live demo allows you to generate high-quality 3D content using text prompts. The outputs are 360° rendered 3d gaussian video and training progress visualization.<br> \
It is based on Stable Diffusion 2.1. Please check out our <strong><a href=https://github.com/EnVision-Research/LucidDreamer>Project Page</a> / <a href=https://arxiv.org/abs/2311.11284>Paper</a> / <a href=https://github.com/EnVision-Research/LucidDreamer>Code</a></strong> if you want to learn more about our method!<br> \
Note that this demo is running on A10G, the running time might be longer than the reported 35 minutes (5000 iterations) on A100.<br> \
&copy; This Gradio space was developed by Haodong LI.")
gr.Interface(fn=main, inputs=[gr.Textbox(lines=2, value="A portrait of IRONMAN, white hair, head, photorealistic, 8K, HDR.", label="Your prompt"),
gr.Textbox(lines=1, value="a man head.", label="Point-E init prompt (optional)"),
gr.Textbox(lines=2, value="unrealistic, blurry, low quality, out of focus, ugly, low contrast, dull, low-resolution.", label="Negative prompt (optional)"),
gr.Slider(1000, 5000, value=3000, label="Number of iterations"),
gr.Slider(7.5, 100, value=7.5, label="CFG"),
gr.Number(value=0, label="Seed")],
outputs=["playable_video", "playable_video"],
examples=example_inputs,
cache_examples=True,
concurrency_limit=2)
demo.launch()