Spaces:
Sleeping
Sleeping
# coding=utf-8 | |
# Copyright 2022 x-plug and The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" MplugOwl model configuration """ | |
import copy | |
import os | |
from typing import Union | |
from transformers.configuration_utils import PretrainedConfig | |
from transformers.models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES | |
from transformers.utils import logging | |
from transformers.models.auto import CONFIG_MAPPING | |
logger = logging.get_logger(__name__) | |
MPLUG_OWL_PRETRAINED_CONFIG_ARCHIVE_MAP = { | |
"MAGAer13/mplug-owl-llama-7b": "https://huggingface.co/MAGAer13/mplug-owl-llama-7b/resolve/main/config.json", | |
# See all MplugOwl models at https://huggingface.co/models?filter=mplug_owl | |
} | |
class MplugOwlVisionConfig(PretrainedConfig): | |
r""" | |
This is the configuration class to store the configuration of a [`MplugOwlVisionModel`]. It is used to instantiate a | |
mPLUG-Owl vision encoder according to the specified arguments, defining the model architecture. Instantiating a | |
configuration defaults will yield a similar configuration to that of the mPLUG-Owl | |
[x-plug/x_plug-llama-7b](https://huggingface.co/x-plug/x_plug-llama-7b) architecture. | |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
documentation from [`PretrainedConfig`] for more information. | |
Args: | |
hidden_size (`int`, *optional*, defaults to 768): | |
Dimensionality of the encoder layers and the pooler layer. | |
intermediate_size (`int`, *optional*, defaults to 3072): | |
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. | |
num_hidden_layers (`int`, *optional*, defaults to 12): | |
Number of hidden layers in the Transformer encoder. | |
num_attention_heads (`int`, *optional*, defaults to 12): | |
Number of attention heads for each attention layer in the Transformer encoder. | |
image_size (`int`, *optional*, defaults to 224): | |
The size (resolution) of each image. | |
patch_size (`int`, *optional*, defaults to 32): | |
The size (resolution) of each patch. | |
hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`): | |
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, | |
`"relu"`, `"selu"` and `"gelu_new"` ``"quick_gelu"` are supported. | |
layer_norm_eps (`float`, *optional*, defaults to 1e-5): | |
The epsilon used by the layer normalization layers. | |
attention_dropout (`float`, *optional*, defaults to 0.0): | |
The dropout ratio for the attention probabilities. | |
initializer_range (`float`, *optional*, defaults to 0.02): | |
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | |
initializer_factor (`float`, *optional*, defaults to 1): | |
A factor for initializing all weight matrices (should be kept to 1, used internally for initialization | |
testing). | |
```""" | |
model_type = "mplug_owl_vision_model" | |
def __init__( | |
self, | |
hidden_size=1024, | |
intermediate_size=4096, | |
projection_dim=768, | |
num_hidden_layers=24, | |
num_attention_heads=16, | |
num_channels=3, | |
image_size=224, | |
patch_size=14, | |
hidden_act="quick_gelu", | |
layer_norm_eps=1e-6, | |
attention_dropout=0.0, | |
initializer_range=0.02, | |
initializer_factor=1.0, | |
use_flash_attn=False, | |
**kwargs, | |
): | |
super().__init__(**kwargs) | |
self.hidden_size = hidden_size | |
self.intermediate_size = intermediate_size | |
self.projection_dim = projection_dim | |
self.num_hidden_layers = num_hidden_layers | |
self.num_attention_heads = num_attention_heads | |
self.num_channels = num_channels | |
self.patch_size = patch_size | |
self.image_size = image_size | |
self.initializer_range = initializer_range | |
self.initializer_factor = initializer_factor | |
self.attention_dropout = attention_dropout | |
self.layer_norm_eps = layer_norm_eps | |
self.hidden_act = hidden_act | |
self.use_flash_attn = use_flash_attn | |
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig": | |
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs) | |
# get the vision config dict if we are loading from MplugOwlConfig | |
if config_dict.get("model_type") == "mplug-owl": | |
config_dict = config_dict["vision_config"] | |
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: | |
logger.warning( | |
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " | |
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." | |
) | |
return cls.from_dict(config_dict, **kwargs) | |
class MplugOwlVisualAbstractorConfig(PretrainedConfig): | |
model_type = "mplug_owl_visual_abstract" | |
def __init__( | |
self, | |
hidden_size=1024, # | |
num_hidden_layers=6, # | |
num_attention_heads=16, # | |
intermediate_size=4096, # | |
attention_probs_dropout_prob=0.1, # | |
initializer_range=0.02, | |
layer_norm_eps=1e-6, # | |
encoder_hidden_size=1024, # | |
**kwargs, | |
): | |
super().__init__(**kwargs) | |
self.hidden_size = hidden_size | |
self.num_hidden_layers = num_hidden_layers | |
self.num_attention_heads = num_attention_heads | |
self.intermediate_size = intermediate_size | |
self.attention_probs_dropout_prob = attention_probs_dropout_prob | |
self.initializer_range = initializer_range | |
self.layer_norm_eps = layer_norm_eps | |
self.encoder_hidden_size = encoder_hidden_size | |
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig": | |
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs) | |
# get the visual_abstractor config dict if we are loading from MplugOwlConfig | |
if config_dict.get("model_type") == "mplug-owl": | |
config_dict = config_dict["abstractor_config"] | |
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: | |
logger.warning( | |
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " | |
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." | |
) | |
return cls.from_dict(config_dict, **kwargs) | |
class MplugOwlConfig(PretrainedConfig): | |
r""" | |
[`MplugOwlConfig`] is the configuration class to store the configuration of a [`MplugOwlForConditionalGeneration`]. It is | |
used to instantiate a mPLUG-Owl model according to the specified arguments, defining the vision model, Q-Former model | |
and language model configs. Instantiating a configuration with the defaults will yield a similar configuration to | |
that of the mPLUG-Owl [x-plug/x_plug-llama-7b](https://huggingface.co/x-plug/x_plug-llama-7b) architecture. | |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
documentation from [`PretrainedConfig`] for more information. | |
Args: | |
vision_config (`dict`, *optional*): | |
Dictionary of configuration options used to initialize [`MplugOwlVisionConfig`]. | |
visual_abstractor_config (`dict`, *optional*): | |
Dictionary of configuration options used to initialize [`MplugOwlVisualAbstractorConfig`]. | |
text_config (`dict`, *optional*): | |
Dictionary of configuration options used to initialize any [`PretrainedConfig`]. | |
num_query_tokens (`int`, *optional*, defaults to 32): | |
The number of query tokens passed through the Transformer. | |
kwargs (*optional*): | |
Dictionary of keyword arguments. | |
Example: | |
```python | |
>>> from transformers import ( | |
... MplugOwlVisionConfig, | |
... MplugOwlVisualAbstractorConfig, | |
... OPTConfig, | |
... MplugOwlConfig, | |
... MplugOwlForConditionalGeneration, | |
... ) | |
>>> # Initializing a MplugOwlConfig with x-plug/x_plug-llama-7b style configuration | |
>>> configuration = MplugOwlConfig() | |
>>> # Initializing a MplugOwlForConditionalGeneration (with random weights) from the x-plug/x_plug-llama-7b style configuration | |
>>> model = MplugOwlForConditionalGeneration(configuration) | |
>>> # Accessing the model configuration | |
>>> configuration = model.config | |
>>> # We can also initialize a MplugOwlConfig from a MplugOwlVisionConfig, MplugOwlVisualAbstractorConfig and any PretrainedConfig | |
>>> # Initializing mPLUG-Owl vision, mPLUG-Owl Q-Former and language model configurations | |
>>> vision_config = MplugOwlVisionConfig() | |
>>> visual_abstractor_config = MplugOwlVisualAbstractorConfig() | |
>>> text_config = OPTConfig() | |
>>> config = MplugOwlConfig.from_text_vision_configs(vision_config, visual_abstractor_config, text_config) | |
```""" | |
model_type = "mplug-owl" | |
is_composition = True | |
def __init__( | |
self, vision_config=None, visual_abstractor_config=None, text_config=None, num_query_tokens=64, **kwargs | |
): | |
super().__init__(**kwargs) | |
if vision_config is None: | |
vision_config = MplugOwlVisionConfig().to_dict() | |
logger.info("vision_config is None.") | |
if visual_abstractor_config is None: | |
visual_abstractor_config = {} | |
logger.info("abstractor_config is None. ") | |
if text_config is None: | |
# we use LLAMA 7b by default | |
from ..llama.configuration_llama import LlamaConfig | |
text_config = LlamaConfig(pad_token_id=2).to_dict() | |
logger.info("text_config is None.") | |
self.vision_config = MplugOwlVisionConfig(**vision_config) | |
self.visual_abstractor_config = MplugOwlVisualAbstractorConfig(**visual_abstractor_config) | |
# self.visual_abstractor_config.layer_norm_eps = 1e-6 | |
text_model_type = text_config["model_type"] if "model_type" in text_config else "llama" | |
self.text_config = CONFIG_MAPPING[text_model_type](**text_config) | |
self.tie_word_embeddings = self.text_config.tie_word_embeddings | |
self.is_encoder_decoder = self.text_config.is_encoder_decoder | |
self.num_query_tokens = num_query_tokens | |
# self.visual_abstractor_config.encoder_hidden_size = self.vision_config.hidden_size | |
self.use_decoder_only_language_model = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES | |
self.initializer_factor = 1.0 | |
self.initializer_range = 0.02 | |
for attr in dir(self.text_config): | |
if not hasattr(self, attr): | |
setattr(self, attr, getattr(self.text_config, attr)) | |
def from_vision_visual_abstractor_text_configs( | |
cls, | |
vision_config: MplugOwlVisionConfig, | |
visual_abstractor_config: MplugOwlVisualAbstractorConfig, | |
text_config: PretrainedConfig, | |
**kwargs, | |
): | |
r""" | |
Instantiate a [`MplugOwlConfig`] (or a derived class) from a mPLUG-Owl vision model, Q-Former and language model | |
configurations. | |
Returns: | |
[`MplugOwlConfig`]: An instance of a configuration object | |
""" | |
return cls( | |
vision_config=vision_config.to_dict(), | |
visual_abstractor_config=visual_abstractor_config.to_dict(), | |
text_config=text_config.to_dict(), | |
**kwargs, | |
) | |
def to_dict(self): | |
""" | |
Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`]. | |
Returns: | |
`Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance, | |
""" | |
output = copy.deepcopy(self.__dict__) | |
output["vision_config"] = self.vision_config.to_dict() | |
output["visual_abstractor_config"] = self.visual_abstractor_config.to_dict() | |
output["text_config"] = self.text_config.to_dict() | |
output["model_type"] = self.__class__.model_type | |
return output | |