File size: 9,203 Bytes
02dcc2f e95353e 02dcc2f 2064da5 02dcc2f 2064da5 02dcc2f 8167b78 bd371f1 8167b78 02dcc2f b79dbd8 02dcc2f bce95bb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 |
import pandas as pd
import streamlit as st
import torch
import os
import torch
import torch.nn as nn
import torch.nn.functional as F
from transformers import BertTokenizer
import appbuilder
from transformers import BertModel
#加载预训练模型
pretrained = BertModel.from_pretrained('hfl/chinese-macbert-base')
#需要移动到cuda上
device = 'cuda' if torch.cuda.is_available() else 'cpu'
pretrained.to(device)
#不训练,不需要计算梯度
for param in pretrained.parameters():
param.requires_grad_(False)
#多头注意力机制
class MultiHeadAttention(nn.Module):
def __init__(self, hidden_size, num_heads):
super(MultiHeadAttention, self).__init__()
# 确保隐藏层特征数能够被头数整除
assert hidden_size % num_heads == 0
self.hidden_size = hidden_size
self.num_heads = num_heads
self.head_dim = hidden_size // num_heads # 计算每个头的维度
# 定义线性层,用于对查询、键、值进行线性变换
self.linear_q = nn.Linear(hidden_size, hidden_size)
self.linear_k = nn.Linear(hidden_size, hidden_size)
self.linear_v = nn.Linear(hidden_size, hidden_size)
self.linear_out = nn.Linear(hidden_size, hidden_size) # 定义输出线性层,用于整合多头注意力后的输出
def forward(self, x):
batch_size, seq_len, _ = x.size()
# 对输入进行线性变换,并将其分割为多个头
q = self.linear_q(x).view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2)
k = self.linear_k(x).view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2)
v = self.linear_v(x).view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2)
# 计算注意力分数
scores = torch.matmul(q, k.transpose(-2, -1)) / torch.sqrt(torch.tensor(self.head_dim, dtype=torch.float))
attn_weights = F.softmax(scores, dim=-1) # 计算注意力权重
# 根据注意力权重对值进行加权求和
context = torch.matmul(attn_weights, v).transpose(1, 2).contiguous().view(batch_size, seq_len, self.hidden_size)
out = self.linear_out(context) # 整合多头注意力的输出
return out
class Model(nn.Module):
def __init__(self):
super(Model, self).__init__()
self.fc1 = nn.Linear(768, 512) # 第一层全连接层
self.fc2 = nn.Linear(512, 256) # 第二层全连接层
self.fc3 = nn.Linear(256, 2) # 第三层全连接层
self.dropout = nn.Dropout(p=0.5)
self.bn1 = nn.BatchNorm1d(512)
self.bn2 = nn.BatchNorm1d(256)
self.activation = nn.ReLU()
self.multihead_attention = MultiHeadAttention(hidden_size=768, num_heads=8) # 多头注意力模块
def forward(self, input_ids, attention_mask, token_type_ids):
out = pretrained(input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids).last_hidden_state
# 应用多头注意力机制
out = self.multihead_attention(out)
out = out[:, 0] # 提取[CLS]标记的输出
out = self.activation(self.bn1(self.fc1(out)))
out = self.dropout(out)
out = self.activation(self.bn2(self.fc2(out)))
out = self.dropout(out)
out = self.fc3(out)
out = out.softmax(dim=1)
return out
def load_models_and_predict(text, device):
# 加载模型
MacBERT_base_CDialBias = torch.load('models/MacBERT-base-CDialBias.pth', map_location=torch.device('cpu'))
MacBERT_base_COLD = torch.load('models/MacBERT-base-CDialBias.pth', map_location=torch.device('cpu'))
# 获取密钥和ID
os.environ['APPBUILDER_TOKEN'] = "bce-v3/ALTAK-n2XgeA6FS3Q5E7Jab6UwE/850b44ebec64c4cad705986ab0b5e3df4b05d407"
app_id = "df881861-9fa6-40b6-b3bd-26df5f5d4b9a"
# 初始化agent实例
your_agent = appbuilder.AppBuilderClient(app_id)
# 创建会话id
conversation_id = your_agent.create_conversation()
# 加载字典和分词工具
tokenizer = BertTokenizer.from_pretrained('hfl/chinese-macbert-base')
# 对输入文本进行编码
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
# 将输入数据移动到相同的设备上
inputs = {k: v.to(device) for k, v in inputs.items()}
# 设置模型为评估模式
MacBERT_base_CDialBias.eval()
MacBERT_base_COLD.eval()
# 调用千帆api获取标签
msg = your_agent.run(conversation_id, text)
answer = msg.content.answer
# 进行预测
with torch.no_grad():
out1 = MacBERT_base_CDialBias(**inputs)
with torch.no_grad():
out2 = MacBERT_base_COLD(**inputs)
out1 = torch.argmax(out1, dim=1).item()
out2 = torch.argmax(out2, dim=1).item()
out3 = answer[0]
# 分析结果
if out3 == "1":
if out1 == out2 == 1:
result = "这句话具有攻击性和社会偏见"
elif out1 == 0 and out2 == 1:
result = "这句话具有攻击性,但无社会偏见"
elif out1 == 1 and out2 == 0:
result = "这句话不具有攻击性,但具有社会偏见"
else:
result = "这句话具有攻击性"
elif out3 == "0":
if out1 == out2 == 0:
result = "这句话不具有攻击性和社会偏见"
elif out1 == 0 and out2 == 1:
result = "这句话具有攻击性,但无社会偏见"
elif out1 == 1 and out2 == 0:
result = "这句话不具有攻击性,但具有社会偏见"
else:
result = "这句话不具有攻击性"
return result
# 页面配置
st.set_page_config(page_title="文件式文本检测工具")
st.title("批量检测攻击性和偏见")
with st.sidebar:
# 初始化session state
if 'logged_in' not in st.session_state:
st.session_state.logged_in = False
# 用户名和密码输入
username = st.sidebar.text_input('用户名')
password = st.sidebar.text_input('密码', type='password')
# 登录按钮
if st.sidebar.button('登录'):
# 这里可以添加验证逻辑,例如检查用户名和密码是否正确
if username == 'admin' and password == '12345':
st.session_state.logged_in = True
st.sidebar.success('登录成功!')
else:
st.error('用户名或密码错误,请重试。')
st.stop()
st.divider()
# 文件上传
file = st.file_uploader("上传你的CSV文件", type=["csv"])
if file is not None:
# 读取文件
df = pd.read_csv(file)
st.dataframe(df)
# 输入列名
column = st.text_input("请输入需要判断的内容的列名")
# 添加保存结果的选项
save_results = st.checkbox("保存结果为CSV文件")
if st.button("开始检测") :
if st.session_state.logged_in == False:
st.error("请先登录!")
st.stop()
if column not in df.columns:
st.error(f"列名 '{column}' 不存在于数据集中,请检查并重新输入。")
else:
# 创建一个新的DataFrame来存储结果
results_df = pd.DataFrame(columns=['检测文本', '检测结果'])
# 显示进度条
progress_bar = st.progress(0)
# 初始化停止标志
stop_flag = False
# 添加停止按钮
stop_button = st.button("停止检测")
for i, (index, row) in enumerate(df.iterrows()):
# 如果用户点击了停止按钮
if stop_button:
stop_flag = True
break
# 获取特定列的内容
text = row[column]
# 进行预测
with st.spinner("AI正在思考中,请稍等..."):
result = load_models_and_predict(text, device)
# 将结果添加到新的DataFrame中
results_df.loc[i] = [text, result]
r = results_df.loc[i]
# 显示结果
st.dataframe(r)
st.divider()
# 更新进度条
progress_bar.progress((i + 1) / len(df))
# 完成处理
progress_bar.empty()
# 如果用户点击了停止按钮
if stop_flag:
st.warning("检测已停止。")
else:
st.success("所有文本已检测完成!")
# 如果用户选择了保存结果
if save_results and not stop_flag:
# 提供下载链接
csv_result = results_df.to_csv(index=False)
st.download_button(
label="下载结果",
data=csv_result,
file_name='results.csv',
mime='text/csv'
)
|