spelling-correction / dataset /prepare_dataset.py
hoang1007's picture
Upload 69 files
44db343
from vocab import Vocab
from noise import SynthesizeData
import os
import sys
import ray
import re
import time
from datetime import datetime as dt
sys.path.append("..")
import numpy as np
from params import PERCENT_NOISE, NUM_CPUS, NUM_PROCESSES
from utils.logger import get_logger
from viet_text_tools import normalize_diacritics
from transformers import AutoTokenizer
CHAR_TRANSFORMER_MAX_SEQ_LEN = 512
tokenizer = AutoTokenizer.from_pretrained("vinai/bartpho-word-base", use_fast=False)
logger = get_logger("./log/prepare_data.log")
@ray.remote
class PrepareActor(object):
def __init__(self, id, lang, data_root='../data', corpus="binhbq") -> None:
self.data_root, self.lang, self.corpus = data_root, lang, corpus
self.id = id
self.data_dir = f'{data_root}/{corpus}'
def open_files(self):
self.train_noise_file_name = f'{self.corpus}.train.noise' + str(self.id)
self.train_file_name = f'{self.corpus}.train' + str(self.id)
self.train_onehot_file_name = f'{self.corpus}.onehot.train' + str(self.id)
self.train_length_file_name = f'{self.corpus}.length.train' + str(self.id)
self.train_file_path = self.data_dir + '/' + self.train_file_name
self.train_noise_file_path = self.data_dir + '/' + self.train_noise_file_name
self.train_onehot_file_path = self.data_dir + '/' + self.train_onehot_file_name
self.train_length_file_path = self.data_dir + '/' + self.train_length_file_name
self.train_file = open(self.train_file_path, 'w', encoding='utf-8')
self.train_noise_file = open(self.train_noise_file_path, 'w', encoding='utf-8')
self.train_onehot_file = open(self.train_onehot_file_path, 'w', encoding='utf-8')
self.train_length_file = open(self.train_length_file_path, 'w', encoding='utf-8')
self.valid_file_name = f'{self.corpus}.valid' + str(self.id)
self.valid_noise_file_name = f'{self.corpus}.valid.noise' + str(self.id)
self.valid_onehot_file_name = f'{self.corpus}.onehot.valid' + str(self.id)
self.valid_length_file_name = f'{self.corpus}.length.valid' + str(self.id)
self.valid_file_path = self.data_dir + '/' + self.valid_file_name
self.valid_noise_file_path = self.data_dir + '/' + self.valid_noise_file_name
self.valid_onehot_file_path = self.data_dir + '/' + self.valid_onehot_file_name
self.valid_length_file_path = self.data_dir + '/' + self.valid_length_file_name
self.valid_file = open(self.valid_file_path, 'w', encoding='utf-8')
self.valid_noise_file = open(self.valid_noise_file_path, 'w', encoding='utf-8')
self.valid_onehot_file = open(self.valid_onehot_file_path, 'w', encoding='utf-8')
self.valid_length_file = open(self.valid_length_file_path, 'w', encoding='utf-8')
self.test_file_name = f'{self.corpus}.test' + str(self.id)
self.test_noise_file_name = f'{self.corpus}.test.noise' + str(self.id)
self.test_onehot_file_name = f'{self.corpus}.onehot.test' + str(self.id)
self.test_length_file_name = f'{self.corpus}.length.test' + str(self.id)
self.test_file_path = self.data_dir + '/' + self.test_file_name
self.test_noise_file_path = self.data_dir + '/' + self.test_noise_file_name
self.test_onehot_file_path = self.data_dir + '/' + self.test_onehot_file_name
self.test_length_file_path = self.data_dir + '/' + self.test_length_file_name
self.test_file = open(self.test_file_path, 'w', encoding='utf-8')
self.test_noise_file = open(self.test_noise_file_path, 'w', encoding='utf-8')
self.test_onehot_file = open(self.test_onehot_file_path, 'w', encoding='utf-8')
self.test_length_file = open(self.test_length_file_path, 'w', encoding='utf-8')
def close_files(self):
if self.train_noise_file:
self.train_noise_file.close()
if self.train_onehot_file:
self.train_onehot_file.close()
if self.train_length_file:
self.train_length_file.close()
if self.train_file:
self.train_file.close()
if self.test_noise_file:
self.test_noise_file.close()
if self.test_onehot_file:
self.test_onehot_file.close()
if self.test_length_file:
self.test_length_file.close()
if self.test_file:
self.test_file.close()
if self.valid_noise_file:
self.valid_noise_file.close()
if self.valid_onehot_file:
self.valid_onehot_file.close()
if self.valid_length_file:
self.valid_length_file.close()
if self.valid_file:
self.valid_file.close()
def prepare_subword_sents_and_vocab(self, lines: ray.data.Dataset):
vocab = Vocab(self.lang)
self.subword_sents = []
print(f"{dt.now()} PrepareActor[{self.id}].prepare_sublist_and_vocab() BEGIN...")
for line in lines.iter_rows():
line = line.strip("\n")
words = line.split(" ")
###
if len(words) > 150:
splited_lines = re.split("[.;]+", line)
for splited_line in splited_lines:
words = splited_line.split(" ")
if len(words) < 10 or len(words) > 150:
continue
words = [normalize_diacritics(word) for word in words]
vocab.update_subword_freq(words)
splited_line = " ".join(words)
self.subword_sents.append(splited_line)
continue
###
if len(words) < 10:
continue
words = [normalize_diacritics(word) for word in words]
line = " ".join(words)
vocab.update_subword_freq(words)
self.subword_sents.append(line)
print(f"{dt.now()} PrepareActor[{self.id}].prepare_sublist_and_vocab() COMPLETED...")
return vocab
def gen_noised_and_onehot(self, noiser:SynthesizeData = None):
print(f"{dt.now()} PrepareActor[{self.id}].gen_training_data() BEGIN...")
self.open_files()
logger = get_logger(f"log/prepare_data_worker{self.id}.log")
assert noiser != None
self.noiser = noiser
np.random.seed(2001)
np.random.shuffle(self.subword_sents)
train_examples = 0
#### Train 0.89 Valid 0.01 Test 0.10
max_train_examples = int(0.89 * len(self.subword_sents))
max_valid_examples = int(0.90 * len(self.subword_sents))
for line in self.subword_sents:
train_examples += 1
if train_examples < max_train_examples:
data_for = "train"
elif train_examples < max_valid_examples:
data_for = "valid"
else:
data_for = "test"
if len(line) > (CHAR_TRANSFORMER_MAX_SEQ_LEN - 2):
continue
normal_noise, normal_onehot = self.noiser.add_normal_noise(
line, percent_err=PERCENT_NOISE)
split_merge_noise, split_merge_onehot = self.noiser.add_split_merge_noise(
line, percent_err=PERCENT_NOISE, percent_normal_err=PERCENT_NOISE)
la = len(normal_noise)
lb = len(split_merge_noise)
if la > (CHAR_TRANSFORMER_MAX_SEQ_LEN - 2):
logger.log(f"INFO: Noised longer than Transformer's max limit (NORMAL NOISE).")
logger.log(f"TEXT: {normal_noise}")
continue
if lb > (CHAR_TRANSFORMER_MAX_SEQ_LEN - 2):
logger.log(f"INFO: Noised longer than Transformer's max limit (SPLIT MERGE NOISE).")
logger.log(f"TEXT: {split_merge_noise}")
continue
if data_for == "train":
self.train_noise_file.write(normal_noise + '\n')
self.train_noise_file.write(split_merge_noise + '\n')
self.train_onehot_file.write(normal_onehot + '\n')
self.train_onehot_file.write(split_merge_onehot + '\n')
self.train_file.write(line + "\n")
self.train_length_file.write(str(la) + "\n")
self.train_length_file.write(str(lb) + "\n")
elif data_for == "test":
self.test_noise_file.write(normal_noise + '\n')
self.test_noise_file.write(split_merge_noise + '\n')
self.test_onehot_file.write(normal_onehot + '\n')
self.test_onehot_file.write(split_merge_onehot + '\n')
self.test_file.write(line + "\n")
self.test_length_file.write(str(la) + "\n")
self.test_length_file.write(str(lb) + "\n")
else:
self.valid_noise_file.write(normal_noise + '\n')
self.valid_noise_file.write(split_merge_noise + '\n')
self.valid_onehot_file.write(normal_onehot + '\n')
self.valid_onehot_file.write(split_merge_onehot + '\n')
self.valid_file.write(line + "\n")
self.valid_length_file.write(str(la) + "\n")
self.valid_length_file.write(str(lb) + "\n")
print(f"{dt.now()} PrepareActor[{self.id}].gen_training_data() COMPLETED...")
self.close_files()
class PrepareDataset:
def __init__(self, data_root='../data', lang='vi', corpus='binhvq'):
self.data_root, self.lang, self.corpus = data_root, lang, corpus
self.data_dir = f'{data_root}/{corpus}'
self.vocab = Vocab(self.lang)
# Number of CPUS
self.MAX_CPUS = 12
self.NUM_CPUS = NUM_CPUS if NUM_CPUS < self.MAX_CPUS else self.MAX_CPUS
ray.init(num_cpus=NUM_CPUS)
print(f"{dt.now()} PrepareDataset: Initiating {NUM_PROCESSES} PrepareActor")
self.actors = [PrepareActor.remote(i, lang, self.data_root, self.corpus) for i in range(NUM_PROCESSES)]
self.vocab_pickle_name = f'{self.corpus}.vocab.pkl'
self.vocab_pickle_path = self.data_dir + '/' + self.vocab_pickle_name
self.vocab_dict_name = f'{self.corpus}.dict.txt'
self.vocab_dict_path = self.data_dir + '/' + self.vocab_dict_name
def build_vocab_and_subwords(self, ray_ds: ray.data.Dataset):
print(f"{dt.now()} PrepareDataset.build_vocab_and_subwords()")
shards = ray_ds.split(n = NUM_PROCESSES)
subword_and_vocab_refs = [actor.prepare_subword_sents_and_vocab.remote(
shard) for actor, shard in zip(self.actors, shards)]
subwords_and_vocabs = ray.get(subword_and_vocab_refs)
# Return results is vocab
for i in range(NUM_PROCESSES):
self.vocab.merge_sub_vocabs(subwords_and_vocabs[i])
def build_noised_and_onehot(self):
print(f"{dt.now()} PrepareDataset.build_noised_and_onehot.remote() BEGIN...")
noiser = SynthesizeData(self.vocab)
noised_and_onehot_refs = [actor.gen_noised_and_onehot.remote(noiser) \
for actor in self.actors]
_ = ray.get(noised_and_onehot_refs)
print(f"{dt.now()} PrepareDataset.build_noised_and_onehot.remote() COMPLETE !!!")
print(f"{dt.now()} PrepareDataset.build_noised_and_onehot(): Writing to noised and onehot files!!!")
def prepare_data(self, in_file_name='vi_wiki.data.txt'):
print(f"{dt.now()} PrepareDataset.prepare_data(): open_files()")
self.in_file_path = self.data_dir + '/' + in_file_name
if not os.path.exists(self.in_file_path):
print(f"{dt.now()} PrepareDataset.prepare_data(): Cannot find input file!!!")
print(f'File path: {self.in_file_path}')
return
print(f"{dt.now()} PrepareDataset.prepare_data(): Processing file part by part ...")
with open(self.in_file_path, 'r', encoding='utf-8') as ifile:
lines = ifile.readlines()
ray_ds = ray.data.from_items(lines)
del lines
print(f"{dt.now()} PrepareDataset.prepare_data(): Building Vocabulary...")
self.build_vocab_and_subwords(ray_ds)
self.vocab.build_vocab(topk=100000)
print(f"{dt.now()} PrepareDataset.prepare_data(): Writing Vocabulary to text file...")
self.vocab.save_dict_text(self.vocab_dict_path)
print(f"{dt.now()} PrepareDataset.prepare_data(): Writing Vocabulary to pickle file...")
self.vocab.save_vocab_dict(self.vocab_pickle_path)
print(f"{dt.now()} PrepareDataset.prepare_data(): Gen train noised and onehot...")
self.build_noised_and_onehot()
print(f"{dt.now()} PrepareDataset - Complete preparing dataset!!!")
if __name__ == "__main__":
import argparse
description = '''
prepare_dataset.py:
Usage: python prepare_dataset.py --dataset vi_wiki --file vi_wiki.data.txt --test False
'''
parser = argparse.ArgumentParser(description=description)
parser.add_argument('--file', type=str, default='corpus-small.txt')
parser.add_argument('--corpus', type=str, default='binhvq')
parser.add_argument('--data_root', type=str, default="../data")
args = parser.parse_args()
creater = PrepareDataset(data_root = args.data_root, corpus=args.corpus)
start_time = time.time()
creater.prepare_data(args.file)
end_time = time.time()
print(f"Time consumed for generate data: {end_time - start_time}")