Spaces:
Running
Running
theo
commited on
Commit
·
8b77729
1
Parent(s):
08a65ff
dockerfile builder + metadata builder
Browse files- .gitignore +1 -0
- build_docker_image.sh +21 -0
- build_metadata_file.py +56 -0
- language_set.json +0 -1
- tagging_app.py +82 -54
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
.idea
|
build_docker_image.sh
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env bash
|
2 |
+
|
3 |
+
|
4 |
+
cleanup() {
|
5 |
+
rm -f Dockerfile
|
6 |
+
}
|
7 |
+
|
8 |
+
trap cleanup ERR EXIT
|
9 |
+
|
10 |
+
cat > Dockerfile << EOF
|
11 |
+
FROM python
|
12 |
+
COPY requirements.txt .
|
13 |
+
COPY tagging_app.py .
|
14 |
+
RUN pip install -r requirements.txt
|
15 |
+
CMD ["streamlit", "run", "tagging_app.py"]
|
16 |
+
EOF
|
17 |
+
|
18 |
+
set -eEx
|
19 |
+
|
20 |
+
./build_metadata_file.py
|
21 |
+
docker build -t dataset-tagger .
|
build_metadata_file.py
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
""" This script will clone the `datasets` repository in your current directory and parse all currently available
|
4 |
+
metadata, from the `README.md` yaml headers and the automatically generated json files.
|
5 |
+
It dumps the results in a `metadata_{current-commit-of-datasets}.json` file.
|
6 |
+
"""
|
7 |
+
|
8 |
+
import json
|
9 |
+
from pathlib import Path
|
10 |
+
from subprocess import check_call, check_output
|
11 |
+
from typing import Dict
|
12 |
+
|
13 |
+
import yaml
|
14 |
+
|
15 |
+
|
16 |
+
def metadata_from_readme(f: Path) -> Dict:
|
17 |
+
with f.open() as fi:
|
18 |
+
content = [line.strip() for line in fi]
|
19 |
+
|
20 |
+
if content[0] == "---" and "---" in content[1:]:
|
21 |
+
yamlblock = "\n".join(content[1 : content[1:].index("---") + 1])
|
22 |
+
return yaml.safe_load(yamlblock) or dict()
|
23 |
+
|
24 |
+
|
25 |
+
def load_ds_datas():
|
26 |
+
drepo = Path("datasets")
|
27 |
+
if drepo.exists() and drepo.is_dir():
|
28 |
+
check_call(["git", "pull"], cwd=str((Path.cwd() / "datasets").absolute()))
|
29 |
+
else:
|
30 |
+
check_call(["git", "clone", "https://github.com/huggingface/datasets.git"])
|
31 |
+
head_sha = check_output(["git", "rev-parse", "HEAD"])
|
32 |
+
|
33 |
+
datasets_md = dict()
|
34 |
+
|
35 |
+
for ddir in sorted((drepo / "datasets").iterdir(), key=lambda d: d.name):
|
36 |
+
|
37 |
+
try:
|
38 |
+
metadata = metadata_from_readme(ddir / "README.md")
|
39 |
+
except:
|
40 |
+
metadata = None
|
41 |
+
|
42 |
+
try:
|
43 |
+
with (ddir / "dataset_infos.json").open() as fi:
|
44 |
+
infos = json.load(fi)
|
45 |
+
except:
|
46 |
+
infos = None
|
47 |
+
|
48 |
+
if metadata is not None and len(metadata) > 0:
|
49 |
+
datasets_md[ddir.name] = dict(metadata=metadata, infos=infos)
|
50 |
+
return head_sha.decode().strip(), datasets_md
|
51 |
+
|
52 |
+
|
53 |
+
if __name__ == "__main__":
|
54 |
+
head_sha, datas = load_ds_datas()
|
55 |
+
with open(f"metadata_{head_sha}.json", "w") as fi:
|
56 |
+
fi.write(json.dumps(datas))
|
language_set.json
CHANGED
@@ -345,7 +345,6 @@
|
|
345 |
"pro": "Old Proven\u00e7al (to 1500), Old Occitan (to 1500)",
|
346 |
"ps": "Pushto, Pashto",
|
347 |
"pt": "Portuguese",
|
348 |
-
"qaa..qtz": "Private use",
|
349 |
"qu": "Quechua",
|
350 |
"raj": "Rajasthani",
|
351 |
"rap": "Rapanui",
|
|
|
345 |
"pro": "Old Proven\u00e7al (to 1500), Old Occitan (to 1500)",
|
346 |
"ps": "Pushto, Pashto",
|
347 |
"pt": "Portuguese",
|
|
|
348 |
"qu": "Quechua",
|
349 |
"raj": "Rajasthani",
|
350 |
"rap": "Rapanui",
|
tagging_app.py
CHANGED
@@ -1,9 +1,7 @@
|
|
1 |
import json
|
2 |
-
import
|
3 |
-
from
|
4 |
-
from glob import glob
|
5 |
|
6 |
-
import datasets
|
7 |
import streamlit as st
|
8 |
import yaml
|
9 |
|
@@ -17,7 +15,6 @@ st.set_page_config(
|
|
17 |
task_set = json.load(open("task_set.json"))
|
18 |
license_set = json.load(open("license_set.json"))
|
19 |
language_set_restricted = json.load(open("language_set.json"))
|
20 |
-
language_set = json.load(open("language_set_full.json"))
|
21 |
|
22 |
multilinguality_set = {
|
23 |
"monolingual": "contains a single language",
|
@@ -49,13 +46,21 @@ creator_set = {
|
|
49 |
########################
|
50 |
|
51 |
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
|
60 |
|
61 |
def new_pre_loaded():
|
@@ -73,8 +78,8 @@ def new_pre_loaded():
|
|
73 |
|
74 |
|
75 |
pre_loaded = new_pre_loaded()
|
76 |
-
|
77 |
-
existing_tag_sets =
|
78 |
all_dataset_ids = list(existing_tag_sets.keys())
|
79 |
|
80 |
|
@@ -104,34 +109,29 @@ Beware that clicking pre-load will overwrite the current state!
|
|
104 |
|
105 |
qp = st.experimental_get_query_params()
|
106 |
preload = qp.get("preload_dataset", list())
|
107 |
-
|
|
|
108 |
if len(preload) == 1 and preload[0] in all_dataset_ids:
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
did_index = all_dataset_ids.index(did_qp)
|
113 |
|
114 |
did = st.sidebar.selectbox(label="Choose dataset to load tag set from", options=all_dataset_ids, index=did_index)
|
115 |
-
if len(existing_tag_sets[did]) > 1:
|
116 |
-
cid = st.sidebar.selectbox(
|
117 |
-
label="Choose config to load tag set from",
|
118 |
-
options=list(existing_tag_sets[did].keys()),
|
119 |
-
index=0,
|
120 |
-
)
|
121 |
-
else:
|
122 |
-
cid = next(iter(existing_tag_sets[did].keys()))
|
123 |
|
124 |
-
|
125 |
-
|
|
|
126 |
st.experimental_set_query_params(preload_dataset=did)
|
127 |
-
if
|
128 |
pre_loaded = new_pre_loaded()
|
129 |
st.experimental_set_query_params()
|
130 |
|
131 |
-
|
|
|
|
|
132 |
|
|
|
133 |
|
134 |
-
pre_loaded["languages"] = list(set(pre_loaded["languages"]))
|
135 |
|
136 |
leftcol.markdown("### Supported tasks")
|
137 |
task_categories = leftcol.multiselect(
|
@@ -156,13 +156,18 @@ for tg in task_categories:
|
|
156 |
task_specs[task_specs.index("other")] = f"{tg}-other-{other_task}"
|
157 |
task_specifics += task_specs
|
158 |
|
|
|
159 |
leftcol.markdown("### Languages")
|
|
|
|
|
|
|
160 |
multilinguality = leftcol.multiselect(
|
161 |
"Does the dataset contain more than one language?",
|
162 |
options=list(multilinguality_set.keys()),
|
163 |
default=pre_loaded["multilinguality"],
|
164 |
format_func=lambda m: f"{m} : {multilinguality_set[m]}",
|
165 |
)
|
|
|
166 |
if "other" in multilinguality:
|
167 |
other_multilinguality = st.text_input(
|
168 |
"You selected 'other' type of multilinguality. Please enter a short hyphen-separated description:",
|
@@ -170,28 +175,42 @@ if "other" in multilinguality:
|
|
170 |
)
|
171 |
st.write(f"Registering other-{other_multilinguality} multilinguality")
|
172 |
multilinguality[multilinguality.index("other")] = f"other-{other_multilinguality}"
|
|
|
|
|
|
|
173 |
languages = leftcol.multiselect(
|
174 |
"What languages are represented in the dataset?",
|
175 |
-
options=list(
|
176 |
default=pre_loaded["languages"],
|
177 |
-
format_func=lambda m: f"{m} : {
|
178 |
)
|
179 |
|
|
|
180 |
leftcol.markdown("### Dataset creators")
|
|
|
|
|
|
|
181 |
language_creators = leftcol.multiselect(
|
182 |
"Where does the text in the dataset come from?",
|
183 |
options=creator_set["language"],
|
184 |
-
default=
|
185 |
)
|
|
|
|
|
|
|
186 |
annotations_creators = leftcol.multiselect(
|
187 |
"Where do the annotations in the dataset come from?",
|
188 |
options=creator_set["annotations"],
|
189 |
-
default=
|
190 |
)
|
|
|
|
|
|
|
|
|
191 |
licenses = leftcol.multiselect(
|
192 |
"What licenses is the dataset under?",
|
193 |
options=list(license_set.keys()),
|
194 |
-
default=
|
195 |
format_func=lambda l: f"{l} : {license_set[l]}",
|
196 |
)
|
197 |
if "other" in licenses:
|
@@ -228,33 +247,42 @@ if "extended" in extended:
|
|
228 |
st.write(f"Registering other-{other_extended_sources} dataset")
|
229 |
extended_sources[extended_sources.index("other")] = f"other-{other_extended_sources}"
|
230 |
source_datasets += [f"extended|{src}" for src in extended_sources]
|
|
|
|
|
|
|
|
|
|
|
|
|
231 |
size_category = leftcol.selectbox(
|
232 |
"What is the size category of the dataset?",
|
233 |
-
options=
|
234 |
-
index=[
|
235 |
-
(pre_loaded.get("size_categories") or ["unknown"])[0]
|
236 |
-
),
|
237 |
)
|
238 |
|
239 |
|
240 |
########################
|
241 |
## Show results
|
242 |
########################
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
243 |
rightcol.markdown(
|
244 |
f"""
|
245 |
### Finalized tag set
|
|
|
|
|
|
|
246 |
```yaml
|
247 |
-
{
|
248 |
-
|
249 |
-
"task_ids": task_specifics,
|
250 |
-
"multilinguality": multilinguality,
|
251 |
-
"languages": languages,
|
252 |
-
"language_creators": language_creators,
|
253 |
-
"annotations_creators": annotations_creators,
|
254 |
-
"source_datasets": source_datasets,
|
255 |
-
"size_categories": size_category,
|
256 |
-
"licenses": licenses,
|
257 |
-
})}
|
258 |
-
```
|
259 |
-
"""
|
260 |
)
|
|
|
1 |
import json
|
2 |
+
from pathlib import Path
|
3 |
+
from typing import List, Tuple
|
|
|
4 |
|
|
|
5 |
import streamlit as st
|
6 |
import yaml
|
7 |
|
|
|
15 |
task_set = json.load(open("task_set.json"))
|
16 |
license_set = json.load(open("license_set.json"))
|
17 |
language_set_restricted = json.load(open("language_set.json"))
|
|
|
18 |
|
19 |
multilinguality_set = {
|
20 |
"monolingual": "contains a single language",
|
|
|
46 |
########################
|
47 |
|
48 |
|
49 |
+
@st.cache(allow_output_mutation=True)
|
50 |
+
def load_ds_datas():
|
51 |
+
metada_exports = sorted(
|
52 |
+
[f for f in Path.cwd().iterdir() if f.name.startswith("metadata_")],
|
53 |
+
key=lambda f: f.lstat().st_mtime,
|
54 |
+
reverse=True,
|
55 |
+
)
|
56 |
+
if len(metada_exports) == 0:
|
57 |
+
raise ValueError("need to run ./build_metada_file.py at least once")
|
58 |
+
with metada_exports[0].open() as fi:
|
59 |
+
return json.load(fi)
|
60 |
+
|
61 |
+
|
62 |
+
def split_known(vals: List[str], okset: List[str]) -> Tuple[List[str], List[str]]:
|
63 |
+
return [v for v in vals if v in okset], [v for v in vals if v not in okset]
|
64 |
|
65 |
|
66 |
def new_pre_loaded():
|
|
|
78 |
|
79 |
|
80 |
pre_loaded = new_pre_loaded()
|
81 |
+
datasets_md = load_ds_datas()
|
82 |
+
existing_tag_sets = {name: mds["metadata"] for name, mds in datasets_md.items()}
|
83 |
all_dataset_ids = list(existing_tag_sets.keys())
|
84 |
|
85 |
|
|
|
109 |
|
110 |
qp = st.experimental_get_query_params()
|
111 |
preload = qp.get("preload_dataset", list())
|
112 |
+
preloaded_id = None
|
113 |
+
did_index = 0
|
114 |
if len(preload) == 1 and preload[0] in all_dataset_ids:
|
115 |
+
preloaded_id, *_ = preload
|
116 |
+
pre_loaded = existing_tag_sets[preloaded_id] or new_pre_loaded()
|
117 |
+
did_index = all_dataset_ids.index(preloaded_id)
|
|
|
118 |
|
119 |
did = st.sidebar.selectbox(label="Choose dataset to load tag set from", options=all_dataset_ids, index=did_index)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
|
121 |
+
leftbtn, rightbtn = st.sidebar.beta_columns(2)
|
122 |
+
if leftbtn.button("pre-load tagset"):
|
123 |
+
pre_loaded = existing_tag_sets[did] or new_pre_loaded()
|
124 |
st.experimental_set_query_params(preload_dataset=did)
|
125 |
+
if rightbtn.button("flush state"):
|
126 |
pre_loaded = new_pre_loaded()
|
127 |
st.experimental_set_query_params()
|
128 |
|
129 |
+
if preloaded_id is not None:
|
130 |
+
st.sidebar.markdown(f"Took [{preloaded_id}](https://huggingface.co/datasets/{preloaded_id}) as base tagset.")
|
131 |
+
|
132 |
|
133 |
+
leftcol, _, rightcol = st.beta_columns([12, 1, 12])
|
134 |
|
|
|
135 |
|
136 |
leftcol.markdown("### Supported tasks")
|
137 |
task_categories = leftcol.multiselect(
|
|
|
156 |
task_specs[task_specs.index("other")] = f"{tg}-other-{other_task}"
|
157 |
task_specifics += task_specs
|
158 |
|
159 |
+
|
160 |
leftcol.markdown("### Languages")
|
161 |
+
filtered_existing_languages = [lgc for lgc in set(pre_loaded["languages"]) if lgc not in language_set_restricted]
|
162 |
+
pre_loaded["languages"] = [lgc for lgc in set(pre_loaded["languages"]) if lgc in language_set_restricted]
|
163 |
+
|
164 |
multilinguality = leftcol.multiselect(
|
165 |
"Does the dataset contain more than one language?",
|
166 |
options=list(multilinguality_set.keys()),
|
167 |
default=pre_loaded["multilinguality"],
|
168 |
format_func=lambda m: f"{m} : {multilinguality_set[m]}",
|
169 |
)
|
170 |
+
|
171 |
if "other" in multilinguality:
|
172 |
other_multilinguality = st.text_input(
|
173 |
"You selected 'other' type of multilinguality. Please enter a short hyphen-separated description:",
|
|
|
175 |
)
|
176 |
st.write(f"Registering other-{other_multilinguality} multilinguality")
|
177 |
multilinguality[multilinguality.index("other")] = f"other-{other_multilinguality}"
|
178 |
+
|
179 |
+
if len(filtered_existing_languages) > 0:
|
180 |
+
leftcol.markdown(f"**Found bad language codes in existing tagset**:\n{filtered_existing_languages}")
|
181 |
languages = leftcol.multiselect(
|
182 |
"What languages are represented in the dataset?",
|
183 |
+
options=list(language_set_restricted.keys()),
|
184 |
default=pre_loaded["languages"],
|
185 |
+
format_func=lambda m: f"{m} : {language_set_restricted[m]}",
|
186 |
)
|
187 |
|
188 |
+
|
189 |
leftcol.markdown("### Dataset creators")
|
190 |
+
ok, nonok = split_known(pre_loaded["language_creators"], creator_set["language"])
|
191 |
+
if len(nonok) > 0:
|
192 |
+
leftcol.markdown(f"**Found bad codes in existing tagset**:\n{nonok}")
|
193 |
language_creators = leftcol.multiselect(
|
194 |
"Where does the text in the dataset come from?",
|
195 |
options=creator_set["language"],
|
196 |
+
default=ok,
|
197 |
)
|
198 |
+
ok, nonok = split_known(pre_loaded["annotations_creators"], creator_set["annotations"])
|
199 |
+
if len(nonok) > 0:
|
200 |
+
leftcol.markdown(f"**Found bad codes in existing tagset**:\n{nonok}")
|
201 |
annotations_creators = leftcol.multiselect(
|
202 |
"Where do the annotations in the dataset come from?",
|
203 |
options=creator_set["annotations"],
|
204 |
+
default=ok,
|
205 |
)
|
206 |
+
|
207 |
+
ok, nonok = split_known(pre_loaded["licenses"], list(license_set.keys()))
|
208 |
+
if len(nonok) > 0:
|
209 |
+
leftcol.markdown(f"**Found bad codes in existing tagset**:\n{nonok}")
|
210 |
licenses = leftcol.multiselect(
|
211 |
"What licenses is the dataset under?",
|
212 |
options=list(license_set.keys()),
|
213 |
+
default=ok,
|
214 |
format_func=lambda l: f"{l} : {license_set[l]}",
|
215 |
)
|
216 |
if "other" in licenses:
|
|
|
247 |
st.write(f"Registering other-{other_extended_sources} dataset")
|
248 |
extended_sources[extended_sources.index("other")] = f"other-{other_extended_sources}"
|
249 |
source_datasets += [f"extended|{src}" for src in extended_sources]
|
250 |
+
|
251 |
+
size_cats = ["unknown", "n<1K", "1K<n<10K", "10K<n<100K", "100K<n<1M", "n>1M"]
|
252 |
+
current_size_cats = pre_loaded.get("size_categories") or ["unknown"]
|
253 |
+
ok, nonok = split_known(current_size_cats, size_cats)
|
254 |
+
if len(nonok) > 0:
|
255 |
+
leftcol.markdown(f"**Found bad codes in existing tagset**:\n{nonok}")
|
256 |
size_category = leftcol.selectbox(
|
257 |
"What is the size category of the dataset?",
|
258 |
+
options=size_cats,
|
259 |
+
index=size_cats.index(ok[0]) if len(ok) > 0 else 0,
|
|
|
|
|
260 |
)
|
261 |
|
262 |
|
263 |
########################
|
264 |
## Show results
|
265 |
########################
|
266 |
+
yamlblock = yaml.dump(
|
267 |
+
{
|
268 |
+
"task_categories": task_categories,
|
269 |
+
"task_ids": task_specifics,
|
270 |
+
"multilinguality": multilinguality,
|
271 |
+
"languages": languages,
|
272 |
+
"language_creators": language_creators,
|
273 |
+
"annotations_creators": annotations_creators,
|
274 |
+
"source_datasets": source_datasets,
|
275 |
+
"size_categories": size_category,
|
276 |
+
"licenses": licenses,
|
277 |
+
}
|
278 |
+
)
|
279 |
rightcol.markdown(
|
280 |
f"""
|
281 |
### Finalized tag set
|
282 |
+
|
283 |
+
Copy it into your dataset's `README.md` header! 🤗
|
284 |
+
|
285 |
```yaml
|
286 |
+
{yamlblock}
|
287 |
+
```""",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
288 |
)
|