Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright Microsoft Research and The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from collections import OrderedDict | |
from typing import Mapping | |
from transformers.configuration_utils import PretrainedConfig | |
from transformers.onnx import OnnxConfig | |
BERT_PRETRAINED_CONFIG_ARCHIVE_MAP = { | |
"bert-base-uncased": "https://huggingface.co/bert-base-uncased/resolve/main/config.json", | |
"bert-large-uncased": "https://huggingface.co/bert-large-uncased/resolve/main/config.json", | |
"bert-base-cased": "https://huggingface.co/bert-base-cased/resolve/main/config.json", | |
"bert-large-cased": "https://huggingface.co/bert-large-cased/resolve/main/config.json", | |
"bert-base-multilingual-uncased": "https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json", | |
"bert-base-multilingual-cased": "https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json", | |
"bert-base-chinese": "https://huggingface.co/bert-base-chinese/resolve/main/config.json", | |
"bert-base-german-cased": "https://huggingface.co/bert-base-german-cased/resolve/main/config.json", | |
"bert-large-uncased-whole-word-masking": "https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json", | |
"bert-large-cased-whole-word-masking": "https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json", | |
"bert-large-uncased-whole-word-masking-finetuned-squad": "https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json", | |
"bert-large-cased-whole-word-masking-finetuned-squad": "https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json", | |
"bert-base-cased-finetuned-mrpc": "https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json", | |
"bert-base-german-dbmdz-cased": "https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json", | |
"bert-base-german-dbmdz-uncased": "https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json", | |
"cl-tohoku/bert-base-japanese": "https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json", | |
"cl-tohoku/bert-base-japanese-whole-word-masking": "https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json", | |
"cl-tohoku/bert-base-japanese-char": "https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json", | |
"cl-tohoku/bert-base-japanese-char-whole-word-masking": "https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json", | |
"TurkuNLP/bert-base-finnish-cased-v1": "https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json", | |
"TurkuNLP/bert-base-finnish-uncased-v1": "https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json", | |
"wietsedv/bert-base-dutch-cased": "https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json", | |
# See all BERT models at https://huggingface.co/models?filter=bert | |
} | |
class BertConfig(PretrainedConfig): | |
r""" | |
This is the configuration class to store the configuration of a [`BertModel`] or a | |
[`TFBertModel`]. It is used to instantiate a BERT model according to the specified arguments, | |
defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration | |
to that of the BERT [bert-base-uncased](https://huggingface.co/bert-base-uncased) architecture. | |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model | |
outputs. Read the documentation from [`PretrainedConfig`] for more information. | |
Args: | |
vocab_size (`int`, *optional*, defaults to 30522): | |
Vocabulary size of the BERT model. Defines the number of different tokens that can be represented by the | |
`inputs_ids` passed when calling [`BertModel`] or | |
[`TFBertModel`]. | |
hidden_size (`int`, *optional*, defaults to 768): | |
Dimensionality of the encoder layers and the pooler layer. | |
num_hidden_layers (`int`, *optional*, defaults to 12): | |
Number of hidden layers in the Transformer encoder. | |
num_attention_heads (`int`, *optional*, defaults to 12): | |
Number of attention heads for each attention layer in the Transformer encoder. | |
intermediate_size (`int`, *optional*, defaults to 3072): | |
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder. | |
hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`): | |
The non-linear activation function (function or string) in the encoder and pooler. If string, | |
`"gelu"`, `"relu"`, `"silu"` and `"gelu_new"` are supported. | |
hidden_dropout_prob (`float`, *optional*, defaults to 0.1): | |
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. | |
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): | |
The dropout ratio for the attention probabilities. | |
max_position_embeddings (`int`, *optional*, defaults to 512): | |
The maximum sequence length that this model might ever be used with. Typically set this to something large | |
just in case (e.g., 512 or 1024 or 2048). | |
type_vocab_size (`int`, *optional*, defaults to 2): | |
The vocabulary size of the `token_type_ids` passed when calling [`BertModel`] or | |
[`TFBertModel`]. | |
initializer_range (`float`, *optional*, defaults to 0.02): | |
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | |
layer_norm_eps (`float`, *optional*, defaults to 1e-12): | |
The epsilon used by the layer normalization layers. | |
position_embedding_type (`str`, *optional*, defaults to `"absolute"`): | |
Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, | |
`"relative_key_query"`. For positional embeddings use `"absolute"`. For more information on | |
`"relative_key"`, please refer to [Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155). For more information on `"relative_key_query"`, please refer to | |
*Method 4* in [Improve Transformer Models with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658). | |
use_cache (`bool`, *optional*, defaults to `True`): | |
Whether or not the model should return the last key/values attentions (not used by all models). Only | |
relevant if `config.is_decoder=True`. | |
classifier_dropout (`float`, *optional*): | |
The dropout ratio for the classification head. | |
Examples: | |
```python | |
>>> from transformers import BertModel, BertConfig | |
>>> # Initializing a BERT bert-base-uncased style configuration | |
>>> configuration = BertConfig() | |
>>> # Initializing a model from the bert-base-uncased style configuration | |
>>> model = BertModel(configuration) | |
>>> # Accessing the model configuration | |
>>> configuration = model.config | |
```""" | |
model_type = "bert" | |
def __init__( | |
self, | |
vocab_size=30522, | |
hidden_size=768, | |
num_hidden_layers=12, | |
num_attention_heads=12, | |
intermediate_size=3072, | |
hidden_act="gelu", | |
hidden_dropout_prob=0.1, | |
attention_probs_dropout_prob=0.1, | |
max_position_embeddings=512, | |
type_vocab_size=2, | |
initializer_range=0.02, | |
layer_norm_eps=1e-12, | |
pad_token_id=0, | |
position_embedding_type="absolute", | |
use_cache=True, | |
classifier_dropout=None, | |
token_keep_rate=1, | |
token_keep_strategy='cls_attn', | |
token_drop_loc=[9], | |
**kwargs | |
): | |
super().__init__(pad_token_id=pad_token_id, **kwargs) | |
self.vocab_size = vocab_size | |
self.hidden_size = hidden_size | |
self.num_hidden_layers = num_hidden_layers | |
self.num_attention_heads = num_attention_heads | |
self.hidden_act = hidden_act | |
self.intermediate_size = intermediate_size | |
self.hidden_dropout_prob = hidden_dropout_prob | |
self.attention_probs_dropout_prob = attention_probs_dropout_prob | |
self.max_position_embeddings = max_position_embeddings | |
self.type_vocab_size = type_vocab_size | |
self.initializer_range = initializer_range | |
self.layer_norm_eps = layer_norm_eps | |
self.position_embedding_type = position_embedding_type | |
self.use_cache = use_cache | |
self.classifier_dropout = classifier_dropout | |
self.token_keep_rate = token_keep_rate | |
self.token_keep_strategy = token_keep_strategy | |
self.token_drop_loc = token_drop_loc | |
class BertOnnxConfig(OnnxConfig): | |
def inputs(self) -> Mapping[str, Mapping[int, str]]: | |
return OrderedDict( | |
[ | |
("input_ids", {0: "batch", 1: "sequence"}), | |
("attention_mask", {0: "batch", 1: "sequence"}), | |
("token_type_ids", {0: "batch", 1: "sequence"}), | |
] | |
) | |
BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP = { | |
"microsoft/beit-base-patch16-224-in22k": "https://huggingface.co/microsoft/beit-base-patch16-224-in22k/resolve/main/config.json", | |
# See all BEiT models at https://huggingface.co/models?filter=beit | |
} | |
class BeitConfig(PretrainedConfig): | |
r""" | |
This is the configuration class to store the configuration of a [`BeitModel`]. It is used to | |
instantiate an BEiT model according to the specified arguments, defining the model architecture. Instantiating a | |
configuration with the defaults will yield a similar configuration to that of the BEiT | |
[microsoft/beit-base-patch16-224-in22k](https://huggingface.co/microsoft/beit-base-patch16-224-in22k) | |
architecture. | |
Args: | |
vocab_size (`int`, *optional*, defaults to 8092): | |
Vocabulary size of the BEiT model. Defines the number of different image tokens that can be used during | |
pre-training. | |
hidden_size (`int`, *optional*, defaults to 768): | |
Dimensionality of the encoder layers and the pooler layer. | |
num_hidden_layers (`int`, *optional*, defaults to 12): | |
Number of hidden layers in the Transformer encoder. | |
num_attention_heads (`int`, *optional*, defaults to 12): | |
Number of attention heads for each attention layer in the Transformer encoder. | |
intermediate_size (`int`, *optional*, defaults to 3072): | |
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. | |
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): | |
The non-linear activation function (function or string) in the encoder and pooler. If string, | |
`"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. | |
hidden_dropout_prob (`float`, *optional*, defaults to 0.1): | |
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. | |
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): | |
The dropout ratio for the attention probabilities. | |
initializer_range (`float`, *optional*, defaults to 0.02): | |
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | |
layer_norm_eps (`float`, *optional*, defaults to 1e-12): | |
The epsilon used by the layer normalization layers. | |
image_size (`int`, *optional*, defaults to `224`): | |
The size (resolution) of each image. | |
patch_size (`int`, *optional*, defaults to `16`): | |
The size (resolution) of each patch. | |
num_channels (`int`, *optional*, defaults to `3`): | |
The number of input channels. | |
use_mask_token (`bool`, *optional*, defaults to `False`): | |
Whether to use a mask token for masked image modeling. | |
use_absolute_position_embeddings (`bool`, *optional*, defaults to `False`): | |
Whether to use BERT-style absolute position embeddings. | |
use_relative_position_bias (`bool`, *optional*, defaults to `False`): | |
Whether to use T5-style relative position embeddings in the self-attention layers. | |
use_shared_relative_position_bias (`bool`, *optional*, defaults to `False`): | |
Whether to use the same relative position embeddings across all self-attention layers of the Transformer. | |
layer_scale_init_value (`float`, *optional*, defaults to 0.1): | |
Scale to use in the self-attention layers. 0.1 for base, 1e-5 for large. Set 0 to disable layer scale. | |
drop_path_rate (`float`, *optional*, defaults to 0.1): | |
Stochastic depth rate per sample (when applied in the main path of residual layers). | |
use_mean_pooling (`bool`, *optional*, defaults to `True`): | |
Whether to mean pool the final hidden states of the patches instead of using the final hidden state of the | |
CLS token, before applying the classification head. | |
out_indices (`List[int]`, *optional*, defaults to `[3, 5, 7, 11]`): | |
Indices of the feature maps to use for semantic segmentation. | |
pool_scales (`Tuple[int]`, *optional*, defaults to `[1, 2, 3, 6]`): | |
Pooling scales used in Pooling Pyramid Module applied on the last feature map. | |
use_auxiliary_head (`bool`, *optional*, defaults to `True`): | |
Whether to use an auxiliary head during training. | |
auxiliary_loss_weight (`float`, *optional*, defaults to 0.4): | |
Weight of the cross-entropy loss of the auxiliary head. | |
auxiliary_channels (`int`, *optional*, defaults to 256): | |
Number of channels to use in the auxiliary head. | |
auxiliary_num_convs (`int`, *optional*, defaults to 1): | |
Number of convolutional layers to use in the auxiliary head. | |
auxiliary_concat_input (`bool`, *optional*, defaults to `False`): | |
Whether to concatenate the output of the auxiliary head with the input before the classification layer. | |
semantic_loss_ignore_index (`int`, *optional*, defaults to 255): | |
The index that is ignored by the loss function of the semantic segmentation model. | |
Example: | |
```python | |
>>> from transformers import BeitModel, BeitConfig | |
>>> # Initializing a BEiT beit-base-patch16-224-in22k style configuration | |
>>> configuration = BeitConfig() | |
>>> # Initializing a model from the beit-base-patch16-224-in22k style configuration | |
>>> model = BeitModel(configuration) | |
>>> # Accessing the model configuration | |
>>> configuration = model.config | |
```""" | |
model_type = "beit" | |
def __init__( | |
self, | |
vocab_size=8192, | |
hidden_size=768, | |
num_hidden_layers=12, | |
num_attention_heads=12, | |
intermediate_size=3072, | |
hidden_act="gelu", | |
hidden_dropout_prob=0.0, | |
attention_probs_dropout_prob=0.0, | |
initializer_range=0.02, | |
layer_norm_eps=1e-12, | |
is_encoder_decoder=False, | |
image_size=224, | |
patch_size=16, | |
num_channels=3, | |
use_mask_token=False, | |
use_absolute_position_embeddings=False, | |
use_relative_position_bias=False, | |
use_shared_relative_position_bias=False, | |
layer_scale_init_value=0.1, | |
drop_path_rate=0.1, | |
use_mean_pooling=True, | |
out_indices=[3, 5, 7, 11], | |
pool_scales=[1, 2, 3, 6], | |
use_auxiliary_head=True, | |
auxiliary_loss_weight=0.4, | |
auxiliary_channels=256, | |
auxiliary_num_convs=1, | |
auxiliary_concat_input=False, | |
semantic_loss_ignore_index=255, | |
token_keep_rate=1, | |
token_keep_strategy='cls_attn', | |
token_drop_loc=[3, 6, 9], | |
sparse_random_attn=None, | |
sparse_local_attn=1, | |
attn_block_size=1, | |
num_cls_tokens=1, | |
token_3d_order='none', | |
**kwargs | |
): | |
super().__init__(**kwargs) | |
self.vocab_size = vocab_size | |
self.hidden_size = hidden_size | |
self.num_hidden_layers = num_hidden_layers | |
self.num_attention_heads = num_attention_heads | |
self.intermediate_size = intermediate_size | |
self.hidden_act = hidden_act | |
self.hidden_dropout_prob = hidden_dropout_prob | |
self.attention_probs_dropout_prob = attention_probs_dropout_prob | |
self.initializer_range = initializer_range | |
self.layer_norm_eps = layer_norm_eps | |
self.image_size = image_size | |
self.patch_size = patch_size | |
self.num_channels = num_channels | |
self.use_mask_token = use_mask_token | |
self.use_absolute_position_embeddings = use_absolute_position_embeddings | |
self.use_relative_position_bias = use_relative_position_bias | |
self.use_shared_relative_position_bias = use_shared_relative_position_bias | |
self.layer_scale_init_value = layer_scale_init_value | |
self.drop_path_rate = drop_path_rate | |
self.use_mean_pooling = use_mean_pooling | |
# decode head attributes (semantic segmentation) | |
self.out_indices = out_indices | |
self.pool_scales = pool_scales | |
# auxiliary head attributes (semantic segmentation) | |
self.use_auxiliary_head = use_auxiliary_head | |
self.auxiliary_loss_weight = auxiliary_loss_weight | |
self.auxiliary_channels = auxiliary_channels | |
self.auxiliary_num_convs = auxiliary_num_convs | |
self.auxiliary_concat_input = auxiliary_concat_input | |
self.semantic_loss_ignore_index = semantic_loss_ignore_index | |
# node sparsification | |
self.token_keep_rate = token_keep_rate | |
self.token_keep_strategy = token_keep_strategy | |
self.token_drop_loc = token_drop_loc | |
# edge sparsification | |
self.sparse_random_attn = sparse_random_attn | |
self.sparse_local_attn = sparse_local_attn | |
self.attn_block_size = attn_block_size | |
self.num_cls_tokens = num_cls_tokens | |
# token order | |
self.token_3d_order = token_3d_order | |