Spaces:
Running
Running
#!/usr/bin/env python | |
from __future__ import annotations | |
import pathlib | |
import gradio as gr | |
import mediapipe as mp | |
import numpy as np | |
mp_face_detection = mp.solutions.face_detection | |
mp_drawing = mp.solutions.drawing_utils | |
TITLE = "MediaPipe Face Detection" | |
DESCRIPTION = "https://google.github.io/mediapipe/" | |
def run(image: np.ndarray, model_selection: int, min_detection_confidence: float) -> np.ndarray: | |
with mp_face_detection.FaceDetection( | |
model_selection=model_selection, min_detection_confidence=min_detection_confidence | |
) as face_detection: | |
results = face_detection.process(image) | |
res = image[:, :, ::-1].copy() | |
if results.detections is not None: | |
for detection in results.detections: | |
mp_drawing.draw_detection(res, detection) | |
return res[:, :, ::-1] | |
model_types = [ | |
"Short-range model (best for faces within 2 meters)", | |
"Full-range model (best for faces within 5 meters)", | |
] | |
image_paths = sorted(pathlib.Path("images").rglob("*.jpg")) | |
examples = [[path, model_types[0], 0.5] for path in image_paths] | |
demo = gr.Interface( | |
fn=run, | |
inputs=[ | |
gr.Image(label="Input", type="numpy"), | |
gr.Radio(label="Model", choices=model_types, type="index", value=model_types[0]), | |
gr.Slider(label="Minimum Detection Confidence", minimum=0, maximum=1, step=0.05, value=0.5), | |
], | |
outputs=gr.Image(label="Output"), | |
examples=examples, | |
title=TITLE, | |
description=DESCRIPTION, | |
) | |
if __name__ == "__main__": | |
demo.queue().launch() | |