Spaces:
Sleeping
Sleeping
iamomtiwari
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -4,7 +4,7 @@ from transformers import ViTForImageClassification, ViTFeatureExtractor
|
|
4 |
from transformers import AutoModelForImageClassification, AutoFeatureExtractor
|
5 |
from PIL import Image
|
6 |
|
7 |
-
# Load crop model (ViT)
|
8 |
model = ViTForImageClassification.from_pretrained("iamomtiwari/VITPEST")
|
9 |
feature_extractor = ViTFeatureExtractor.from_pretrained("iamomtiwari/VITPEST")
|
10 |
|
@@ -12,6 +12,10 @@ feature_extractor = ViTFeatureExtractor.from_pretrained("iamomtiwari/VITPEST")
|
|
12 |
fallback_model = AutoModelForImageClassification.from_pretrained("microsoft/resnet-50")
|
13 |
fallback_feature_extractor = AutoFeatureExtractor.from_pretrained("microsoft/resnet-50")
|
14 |
|
|
|
|
|
|
|
|
|
15 |
# Define class labels with treatment advice
|
16 |
class_labels = {
|
17 |
1: {"label": "Stage Corn___Common_Rust", "treatment": "Apply fungicides as soon as symptoms are noticed. Practice crop rotation and remove infected plants."},
|
@@ -34,7 +38,7 @@ class_labels = {
|
|
34 |
labels_list = [class_labels[i]["label"] for i in range(1, 15)]
|
35 |
|
36 |
# Inference function
|
37 |
-
def predict(image):
|
38 |
# First, use the crop disease model (ViT)
|
39 |
inputs = feature_extractor(images=image, return_tensors="pt")
|
40 |
with torch.no_grad():
|
@@ -44,10 +48,22 @@ def predict(image):
|
|
44 |
# Check if the predicted label corresponds to a crop disease
|
45 |
predicted_label = labels_list[predicted_class_idx]
|
46 |
|
47 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
if predicted_class_idx < len(class_labels): # It's a crop disease
|
49 |
treatment_advice = class_labels[predicted_class_idx + 1]["treatment"]
|
50 |
-
return f"Disease: {predicted_label}\n\nTreatment Advice: {treatment_advice}
|
51 |
else:
|
52 |
# If not a crop disease, use the fallback model (ResNet50) for general object detection
|
53 |
inputs_fallback = fallback_feature_extractor(images=image, return_tensors="pt")
|
@@ -57,8 +73,12 @@ def predict(image):
|
|
57 |
|
58 |
# Get the fallback prediction label
|
59 |
fallback_label = fallback_model.config.id2label[predicted_class_idx_fallback]
|
60 |
-
return f"Fallback Prediction (Not a Crop): {fallback_label}
|
61 |
|
62 |
# Create Gradio Interface
|
63 |
-
interface = gr.Interface(
|
|
|
|
|
|
|
|
|
64 |
interface.launch()
|
|
|
4 |
from transformers import AutoModelForImageClassification, AutoFeatureExtractor
|
5 |
from PIL import Image
|
6 |
|
7 |
+
# Load crop disease model (ViT)
|
8 |
model = ViTForImageClassification.from_pretrained("iamomtiwari/VITPEST")
|
9 |
feature_extractor = ViTFeatureExtractor.from_pretrained("iamomtiwari/VITPEST")
|
10 |
|
|
|
12 |
fallback_model = AutoModelForImageClassification.from_pretrained("microsoft/resnet-50")
|
13 |
fallback_feature_extractor = AutoFeatureExtractor.from_pretrained("microsoft/resnet-50")
|
14 |
|
15 |
+
# Load additional ViT model (221k model) for a different classification if the user feedback is "no"
|
16 |
+
vit_221k_model = ViTForImageClassification.from_pretrained("google/vit-base-patch16-224-in21k")
|
17 |
+
vit_221k_feature_extractor = ViTFeatureExtractor.from_pretrained("google/vit-base-patch16-224-in21k")
|
18 |
+
|
19 |
# Define class labels with treatment advice
|
20 |
class_labels = {
|
21 |
1: {"label": "Stage Corn___Common_Rust", "treatment": "Apply fungicides as soon as symptoms are noticed. Practice crop rotation and remove infected plants."},
|
|
|
38 |
labels_list = [class_labels[i]["label"] for i in range(1, 15)]
|
39 |
|
40 |
# Inference function
|
41 |
+
def predict(image, feedback):
|
42 |
# First, use the crop disease model (ViT)
|
43 |
inputs = feature_extractor(images=image, return_tensors="pt")
|
44 |
with torch.no_grad():
|
|
|
48 |
# Check if the predicted label corresponds to a crop disease
|
49 |
predicted_label = labels_list[predicted_class_idx]
|
50 |
|
51 |
+
# If the feedback is "no", switch to ViT 221k model for a different class prediction
|
52 |
+
if feedback == "no":
|
53 |
+
# Use ViT 221k model
|
54 |
+
inputs_vit_221k = vit_221k_feature_extractor(images=image, return_tensors="pt")
|
55 |
+
with torch.no_grad():
|
56 |
+
outputs_vit_221k = vit_221k_model(**inputs_vit_221k)
|
57 |
+
predicted_class_idx_vit_221k = outputs_vit_221k.logits.argmax(-1).item()
|
58 |
+
|
59 |
+
# Get the ViT 221k prediction label
|
60 |
+
vit_221k_label = vit_221k_model.config.id2label[predicted_class_idx_vit_221k]
|
61 |
+
return f"Fallback ViT 221k Prediction: {vit_221k_label}"
|
62 |
+
|
63 |
+
# If feedback is "yes", return the initial disease prediction and treatment advice
|
64 |
if predicted_class_idx < len(class_labels): # It's a crop disease
|
65 |
treatment_advice = class_labels[predicted_class_idx + 1]["treatment"]
|
66 |
+
return f"Disease: {predicted_label}\n\nTreatment Advice: {treatment_advice}"
|
67 |
else:
|
68 |
# If not a crop disease, use the fallback model (ResNet50) for general object detection
|
69 |
inputs_fallback = fallback_feature_extractor(images=image, return_tensors="pt")
|
|
|
73 |
|
74 |
# Get the fallback prediction label
|
75 |
fallback_label = fallback_model.config.id2label[predicted_class_idx_fallback]
|
76 |
+
return f"Fallback Prediction (Not a Crop): {fallback_label}"
|
77 |
|
78 |
# Create Gradio Interface
|
79 |
+
interface = gr.Interface(
|
80 |
+
fn=predict,
|
81 |
+
inputs=["image", gr.Radio(["yes", "no"], label="Is the prediction correct?")],
|
82 |
+
outputs="text"
|
83 |
+
)
|
84 |
interface.launch()
|