Spaces:
Sleeping
Sleeping
import os | |
import sys | |
import torch | |
from torch.optim.lr_scheduler import StepLR | |
sys.path.append(os.getcwd()) | |
from nets.layers import * | |
from nets.base import TrainWrapperBaseClass | |
from nets.spg.gated_pixelcnn_v2 import GatedPixelCNN as pixelcnn | |
from nets.spg.vqvae_1d import VQVAE as s2g_body, Wav2VecEncoder | |
from nets.spg.vqvae_1d import AudioEncoder | |
from nets.utils import parse_audio, denormalize | |
from data_utils import get_mfcc, get_melspec, get_mfcc_old, get_mfcc_psf, get_mfcc_psf_min, get_mfcc_ta | |
import numpy as np | |
import torch.optim as optim | |
import torch.nn.functional as F | |
from sklearn.preprocessing import normalize | |
from data_utils.lower_body import c_index, c_index_3d, c_index_6d | |
from data_utils.utils import smooth_geom, get_mfcc_sepa | |
class TrainWrapper(TrainWrapperBaseClass): | |
''' | |
a wrapper receving a batch from data_utils and calculate loss | |
''' | |
def __init__(self, args, config): | |
self.args = args | |
self.config = config | |
self.device = torch.device(self.args.gpu) | |
self.global_step = 0 | |
self.convert_to_6d = self.config.Data.pose.convert_to_6d | |
self.expression = self.config.Data.pose.expression | |
self.epoch = 0 | |
self.init_params() | |
self.num_classes = 4 | |
self.audio = True | |
self.composition = self.config.Model.composition | |
self.bh_model = self.config.Model.bh_model | |
if self.audio: | |
self.audioencoder = AudioEncoder(in_dim=64, num_hiddens=256, num_residual_layers=2, num_residual_hiddens=256).to(self.device) | |
else: | |
self.audioencoder = None | |
if self.convert_to_6d: | |
dim, layer = 512, 10 | |
else: | |
dim, layer = 256, 15 | |
self.generator = pixelcnn(2048, dim, layer, self.num_classes, self.audio, self.bh_model).to(self.device) | |
self.g_body = s2g_body(self.each_dim[1], embedding_dim=64, num_embeddings=config.Model.code_num, num_hiddens=1024, | |
num_residual_layers=2, num_residual_hiddens=512).to(self.device) | |
self.g_hand = s2g_body(self.each_dim[2], embedding_dim=64, num_embeddings=config.Model.code_num, num_hiddens=1024, | |
num_residual_layers=2, num_residual_hiddens=512).to(self.device) | |
model_path = self.config.Model.vq_path | |
model_ckpt = torch.load(model_path, map_location=torch.device('cpu')) | |
self.g_body.load_state_dict(model_ckpt['generator']['g_body']) | |
self.g_hand.load_state_dict(model_ckpt['generator']['g_hand']) | |
if torch.cuda.device_count() > 1: | |
self.g_body = torch.nn.DataParallel(self.g_body, device_ids=[0, 1]) | |
self.g_hand = torch.nn.DataParallel(self.g_hand, device_ids=[0, 1]) | |
self.generator = torch.nn.DataParallel(self.generator, device_ids=[0, 1]) | |
if self.audioencoder is not None: | |
self.audioencoder = torch.nn.DataParallel(self.audioencoder, device_ids=[0, 1]) | |
self.discriminator = None | |
if self.convert_to_6d: | |
self.c_index = c_index_6d | |
else: | |
self.c_index = c_index_3d | |
super().__init__(args, config) | |
def init_optimizer(self): | |
print('using Adam') | |
self.generator_optimizer = optim.Adam( | |
self.generator.parameters(), | |
lr=self.config.Train.learning_rate.generator_learning_rate, | |
betas=[0.9, 0.999] | |
) | |
if self.audioencoder is not None: | |
opt = self.config.Model.AudioOpt | |
if opt == 'Adam': | |
self.audioencoder_optimizer = optim.Adam( | |
self.audioencoder.parameters(), | |
lr=self.config.Train.learning_rate.generator_learning_rate, | |
betas=[0.9, 0.999] | |
) | |
else: | |
print('using SGD') | |
self.audioencoder_optimizer = optim.SGD( | |
filter(lambda p: p.requires_grad,self.audioencoder.parameters()), | |
lr=self.config.Train.learning_rate.generator_learning_rate*10, | |
momentum=0.9, | |
nesterov=False, | |
) | |
def state_dict(self): | |
model_state = { | |
'generator': self.generator.state_dict(), | |
'generator_optim': self.generator_optimizer.state_dict(), | |
'audioencoder': self.audioencoder.state_dict() if self.audio else None, | |
'audioencoder_optim': self.audioencoder_optimizer.state_dict() if self.audio else None, | |
'discriminator': self.discriminator.state_dict() if self.discriminator is not None else None, | |
'discriminator_optim': self.discriminator_optimizer.state_dict() if self.discriminator is not None else None | |
} | |
return model_state | |
def load_state_dict(self, state_dict): | |
from collections import OrderedDict | |
new_state_dict = OrderedDict() # create new OrderedDict that does not contain `module.` | |
for k, v in state_dict.items(): | |
sub_dict = OrderedDict() | |
if v is not None: | |
for k1, v1 in v.items(): | |
name = k1.replace('module.', '') | |
sub_dict[name] = v1 | |
new_state_dict[k] = sub_dict | |
state_dict = new_state_dict | |
if 'generator' in state_dict: | |
self.generator.load_state_dict(state_dict['generator']) | |
else: | |
self.generator.load_state_dict(state_dict) | |
if 'generator_optim' in state_dict and self.generator_optimizer is not None: | |
self.generator_optimizer.load_state_dict(state_dict['generator_optim']) | |
if self.discriminator is not None: | |
self.discriminator.load_state_dict(state_dict['discriminator']) | |
if 'discriminator_optim' in state_dict and self.discriminator_optimizer is not None: | |
self.discriminator_optimizer.load_state_dict(state_dict['discriminator_optim']) | |
if 'audioencoder' in state_dict and self.audioencoder is not None: | |
self.audioencoder.load_state_dict(state_dict['audioencoder']) | |
def init_params(self): | |
if self.config.Data.pose.convert_to_6d: | |
scale = 2 | |
else: | |
scale = 1 | |
global_orient = round(0 * scale) | |
leye_pose = reye_pose = round(0 * scale) | |
jaw_pose = round(0 * scale) | |
body_pose = round((63 - 24) * scale) | |
left_hand_pose = right_hand_pose = round(45 * scale) | |
if self.expression: | |
expression = 100 | |
else: | |
expression = 0 | |
b_j = 0 | |
jaw_dim = jaw_pose | |
b_e = b_j + jaw_dim | |
eye_dim = leye_pose + reye_pose | |
b_b = b_e + eye_dim | |
body_dim = global_orient + body_pose | |
b_h = b_b + body_dim | |
hand_dim = left_hand_pose + right_hand_pose | |
b_f = b_h + hand_dim | |
face_dim = expression | |
self.dim_list = [b_j, b_e, b_b, b_h, b_f] | |
self.full_dim = jaw_dim + eye_dim + body_dim + hand_dim | |
self.pose = int(self.full_dim / round(3 * scale)) | |
self.each_dim = [jaw_dim, eye_dim + body_dim, hand_dim, face_dim] | |
def __call__(self, bat): | |
# assert (not self.args.infer), "infer mode" | |
self.global_step += 1 | |
total_loss = None | |
loss_dict = {} | |
aud, poses = bat['aud_feat'].to(self.device).to(torch.float32), bat['poses'].to(self.device).to(torch.float32) | |
id = bat['speaker'].to(self.device) - 20 | |
# id = F.one_hot(id, self.num_classes) | |
poses = poses[:, self.c_index, :] | |
aud = aud.permute(0, 2, 1) | |
gt_poses = poses.permute(0, 2, 1) | |
with torch.no_grad(): | |
self.g_body.eval() | |
self.g_hand.eval() | |
if torch.cuda.device_count() > 1: | |
_, body_latents = self.g_body.module.encode(gt_poses=gt_poses[..., :self.each_dim[1]], id=id) | |
_, hand_latents = self.g_hand.module.encode(gt_poses=gt_poses[..., self.each_dim[1]:], id=id) | |
else: | |
_, body_latents = self.g_body.encode(gt_poses=gt_poses[..., :self.each_dim[1]], id=id) | |
_, hand_latents = self.g_hand.encode(gt_poses=gt_poses[..., self.each_dim[1]:], id=id) | |
latents = torch.cat([body_latents.unsqueeze(dim=-1), hand_latents.unsqueeze(dim=-1)], dim=-1) | |
latents = latents.detach() | |
if self.audio: | |
audio = self.audioencoder(aud[:, :].transpose(1, 2), frame_num=latents.shape[1]*4).unsqueeze(dim=-1).repeat(1, 1, 1, 2) | |
logits = self.generator(latents[:, :], id, audio) | |
else: | |
logits = self.generator(latents, id) | |
logits = logits.permute(0, 2, 3, 1).contiguous() | |
self.generator_optimizer.zero_grad() | |
if self.audio: | |
self.audioencoder_optimizer.zero_grad() | |
loss = F.cross_entropy(logits.view(-1, logits.shape[-1]), latents.view(-1)) | |
loss.backward() | |
grad = torch.nn.utils.clip_grad_norm(self.generator.parameters(), self.config.Train.max_gradient_norm) | |
if torch.isnan(grad).sum() > 0: | |
print('fuck') | |
loss_dict['grad'] = grad.item() | |
loss_dict['ce_loss'] = loss.item() | |
self.generator_optimizer.step() | |
if self.audio: | |
self.audioencoder_optimizer.step() | |
return total_loss, loss_dict | |
def infer_on_audio(self, aud_fn, initial_pose=None, norm_stats=None, exp=None, var=None, w_pre=False, rand=None, | |
continuity=False, id=None, fps=15, sr=22000, B=1, am=None, am_sr=None, frame=0,**kwargs): | |
''' | |
initial_pose: (B, C, T), normalized | |
(aud_fn, txgfile) -> generated motion (B, T, C) | |
''' | |
output = [] | |
assert self.args.infer, "train mode" | |
self.generator.eval() | |
self.g_body.eval() | |
self.g_hand.eval() | |
if continuity: | |
aud_feat, gap = get_mfcc_sepa(aud_fn, sr=sr, fps=fps) | |
else: | |
aud_feat = get_mfcc_ta(aud_fn, sr=sr, fps=fps, smlpx=True, type='mfcc', am=am) | |
aud_feat = aud_feat.transpose(1, 0) | |
aud_feat = aud_feat[np.newaxis, ...].repeat(B, axis=0) | |
aud_feat = torch.tensor(aud_feat, dtype=torch.float32).to(self.device) | |
if id is None: | |
id = torch.tensor([0]).to(self.device) | |
else: | |
id = id.repeat(B) | |
with torch.no_grad(): | |
aud_feat = aud_feat.permute(0, 2, 1) | |
if continuity: | |
self.audioencoder.eval() | |
pre_pose = {} | |
pre_pose['b'] = pre_pose['h'] = None | |
pre_latents, pre_audio, body_0, hand_0 = self.infer(aud_feat[:, :gap], frame, id, B, pre_pose=pre_pose) | |
pre_pose['b'] = body_0[:, :, -4:].transpose(1,2) | |
pre_pose['h'] = hand_0[:, :, -4:].transpose(1,2) | |
_, _, body_1, hand_1 = self.infer(aud_feat[:, gap:], frame, id, B, pre_latents, pre_audio, pre_pose) | |
body = torch.cat([body_0, body_1], dim=2) | |
hand = torch.cat([hand_0, hand_1], dim=2) | |
else: | |
if self.audio: | |
self.audioencoder.eval() | |
audio = self.audioencoder(aud_feat.transpose(1, 2), frame_num=frame).unsqueeze(dim=-1).repeat(1, 1, 1, 2) | |
latents = self.generator.generate(id, shape=[audio.shape[2], 2], batch_size=B, aud_feat=audio) | |
else: | |
latents = self.generator.generate(id, shape=[aud_feat.shape[1]//4, 2], batch_size=B) | |
body_latents = latents[..., 0] | |
hand_latents = latents[..., 1] | |
body, _ = self.g_body.decode(b=body_latents.shape[0], w=body_latents.shape[1], latents=body_latents) | |
hand, _ = self.g_hand.decode(b=hand_latents.shape[0], w=hand_latents.shape[1], latents=hand_latents) | |
pred_poses = torch.cat([body, hand], dim=1).transpose(1,2).cpu().numpy() | |
output = pred_poses | |
return output | |
def infer(self, aud_feat, frame, id, B, pre_latents=None, pre_audio=None, pre_pose=None): | |
audio = self.audioencoder(aud_feat.transpose(1, 2), frame_num=frame).unsqueeze(dim=-1).repeat(1, 1, 1, 2) | |
latents = self.generator.generate(id, shape=[audio.shape[2], 2], batch_size=B, aud_feat=audio, | |
pre_latents=pre_latents, pre_audio=pre_audio) | |
body_latents = latents[..., 0] | |
hand_latents = latents[..., 1] | |
body, _ = self.g_body.decode(b=body_latents.shape[0], w=body_latents.shape[1], | |
latents=body_latents, pre_state=pre_pose['b']) | |
hand, _ = self.g_hand.decode(b=hand_latents.shape[0], w=hand_latents.shape[1], | |
latents=hand_latents, pre_state=pre_pose['h']) | |
return latents, audio, body, hand | |
def generate(self, aud, id, frame_num=0): | |
self.generator.eval() | |
self.g_body.eval() | |
self.g_hand.eval() | |
aud_feat = aud.permute(0, 2, 1) | |
if self.audio: | |
self.audioencoder.eval() | |
audio = self.audioencoder(aud_feat.transpose(1, 2), frame_num=frame_num).unsqueeze(dim=-1).repeat(1, 1, 1, 2) | |
latents = self.generator.generate(id, shape=[audio.shape[2], 2], batch_size=aud.shape[0], aud_feat=audio) | |
else: | |
latents = self.generator.generate(id, shape=[aud_feat.shape[1] // 4, 2], batch_size=aud.shape[0]) | |
body_latents = latents[..., 0] | |
hand_latents = latents[..., 1] | |
body = self.g_body.decode(b=body_latents.shape[0], w=body_latents.shape[1], latents=body_latents) | |
hand = self.g_hand.decode(b=hand_latents.shape[0], w=hand_latents.shape[1], latents=hand_latents) | |
pred_poses = torch.cat([body, hand], dim=1).transpose(1, 2) | |
return pred_poses | |