Spaces:
Running
Running
import os | |
import sys | |
# os.environ["PYOPENGL_PLATFORM"] = "egl" | |
os.environ['CUDA_VISIBLE_DEVICES'] = '0' | |
sys.path.append(os.getcwd()) | |
from transformers import Wav2Vec2Processor | |
from glob import glob | |
import numpy as np | |
import json | |
import smplx as smpl | |
from nets import * | |
from trainer.options import parse_args | |
from data_utils import torch_data | |
from trainer.config import load_JsonConfig | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from torch.utils import data | |
from data_utils.rotation_conversion import rotation_6d_to_matrix, matrix_to_axis_angle | |
from data_utils.lower_body import part2full, pred2poses, poses2pred, poses2poses | |
from visualise.rendering import RenderTool | |
import time | |
def init_model(model_name, model_path, args, config): | |
if model_name == 's2g_face': | |
generator = s2g_face( | |
args, | |
config, | |
) | |
elif model_name == 's2g_body_vq': | |
generator = s2g_body_vq( | |
args, | |
config, | |
) | |
elif model_name == 's2g_body_pixel': | |
generator = s2g_body_pixel( | |
args, | |
config, | |
) | |
elif model_name == 's2g_LS3DCG': | |
generator = LS3DCG( | |
args, | |
config, | |
) | |
else: | |
raise NotImplementedError | |
model_ckpt = torch.load(model_path, map_location=torch.device('cpu')) | |
if model_name == 'smplx_S2G': | |
generator.generator.load_state_dict(model_ckpt['generator']['generator']) | |
elif 'generator' in list(model_ckpt.keys()): | |
generator.load_state_dict(model_ckpt['generator']) | |
else: | |
model_ckpt = {'generator': model_ckpt} | |
generator.load_state_dict(model_ckpt) | |
return generator | |
def init_dataloader(data_root, speakers, args, config): | |
if data_root.endswith('.csv'): | |
raise NotImplementedError | |
else: | |
data_class = torch_data | |
if 'smplx' in config.Model.model_name or 's2g' in config.Model.model_name: | |
data_base = torch_data( | |
data_root=data_root, | |
speakers=speakers, | |
split='test', | |
limbscaling=False, | |
normalization=config.Data.pose.normalization, | |
norm_method=config.Data.pose.norm_method, | |
split_trans_zero=False, | |
num_pre_frames=config.Data.pose.pre_pose_length, | |
num_generate_length=config.Data.pose.generate_length, | |
num_frames=30, | |
aud_feat_win_size=config.Data.aud.aud_feat_win_size, | |
aud_feat_dim=config.Data.aud.aud_feat_dim, | |
feat_method=config.Data.aud.feat_method, | |
smplx=True, | |
audio_sr=22000, | |
convert_to_6d=config.Data.pose.convert_to_6d, | |
expression=config.Data.pose.expression, | |
config=config | |
) | |
else: | |
data_base = torch_data( | |
data_root=data_root, | |
speakers=speakers, | |
split='val', | |
limbscaling=False, | |
normalization=config.Data.pose.normalization, | |
norm_method=config.Data.pose.norm_method, | |
split_trans_zero=False, | |
num_pre_frames=config.Data.pose.pre_pose_length, | |
aud_feat_win_size=config.Data.aud.aud_feat_win_size, | |
aud_feat_dim=config.Data.aud.aud_feat_dim, | |
feat_method=config.Data.aud.feat_method | |
) | |
if config.Data.pose.normalization: | |
norm_stats_fn = os.path.join(os.path.dirname(args.model_path), "norm_stats.npy") | |
norm_stats = np.load(norm_stats_fn, allow_pickle=True) | |
data_base.data_mean = norm_stats[0] | |
data_base.data_std = norm_stats[1] | |
else: | |
norm_stats = None | |
data_base.get_dataset() | |
infer_set = data_base.all_dataset | |
infer_loader = data.DataLoader(data_base.all_dataset, batch_size=1, shuffle=False) | |
return infer_set, infer_loader, norm_stats | |
def get_vertices(smplx_model, betas, result_list, exp, require_pose=False): | |
vertices_list = [] | |
poses_list = [] | |
expression = torch.zeros([1, 50]) | |
for i in result_list: | |
vertices = [] | |
poses = [] | |
for j in range(i.shape[0]): | |
output = smplx_model(betas=betas, | |
expression=i[j][165:265].unsqueeze_(dim=0) if exp else expression, | |
jaw_pose=i[j][0:3].unsqueeze_(dim=0), | |
leye_pose=i[j][3:6].unsqueeze_(dim=0), | |
reye_pose=i[j][6:9].unsqueeze_(dim=0), | |
global_orient=i[j][9:12].unsqueeze_(dim=0), | |
body_pose=i[j][12:75].unsqueeze_(dim=0), | |
left_hand_pose=i[j][75:120].unsqueeze_(dim=0), | |
right_hand_pose=i[j][120:165].unsqueeze_(dim=0), | |
return_verts=True) | |
vertices.append(output.vertices.detach().cpu().numpy().squeeze()) | |
# pose = torch.cat([output.body_pose, output.left_hand_pose, output.right_hand_pose], dim=1) | |
pose = output.body_pose | |
poses.append(pose.detach().cpu()) | |
vertices = np.asarray(vertices) | |
vertices_list.append(vertices) | |
poses = torch.cat(poses, dim=0) | |
poses_list.append(poses) | |
if require_pose: | |
return vertices_list, poses_list | |
else: | |
return vertices_list, None | |
global_orient = torch.tensor([3.0747, -0.0158, -0.0152]) | |
def infer(data_root, g_body, g_face, g_body2, exp_name, infer_loader, infer_set, device, norm_stats, smplx, | |
smplx_model, rendertool, args=None, config=None): | |
am = Wav2Vec2Processor.from_pretrained("vitouphy/wav2vec2-xls-r-300m-phoneme") | |
am_sr = 16000 | |
num_sample = 1 | |
face = False | |
if face: | |
body_static = torch.zeros([1, 162], device='cuda') | |
body_static[:, 6:9] = torch.tensor([3.0747, -0.0158, -0.0152]).reshape(1, 3).repeat(body_static.shape[0], 1) | |
stand = False | |
j = 0 | |
gt_0 = None | |
for bat in infer_loader: | |
poses_ = bat['poses'].to(torch.float32).to(device) | |
if poses_.shape[-1] == 300: | |
j = j + 1 | |
if j > 1000: | |
continue | |
id = bat['speaker'].to('cuda') - 20 | |
if config.Data.pose.expression: | |
expression = bat['expression'].to(device).to(torch.float32) | |
poses = torch.cat([poses_, expression], dim=1) | |
else: | |
poses = poses_ | |
cur_wav_file = bat['aud_file'][0] | |
betas = bat['betas'][0].to(torch.float64).to('cuda') | |
# betas = torch.zeros([1, 300], dtype=torch.float64).to('cuda') | |
gt = poses.to('cuda').squeeze().transpose(1, 0) | |
if config.Data.pose.normalization: | |
gt = denormalize(gt, norm_stats[0], norm_stats[1]).squeeze(dim=0) | |
if config.Data.pose.convert_to_6d: | |
if config.Data.pose.expression: | |
gt_exp = gt[:, -100:] | |
gt = gt[:, :-100] | |
gt = gt.reshape(gt.shape[0], -1, 6) | |
gt = matrix_to_axis_angle(rotation_6d_to_matrix(gt)).reshape(gt.shape[0], -1) | |
gt = torch.cat([gt, gt_exp], -1) | |
if face: | |
gt = torch.cat([gt[:, :3], body_static.repeat(gt.shape[0], 1), gt[:, -100:]], dim=-1) | |
result_list = [gt] | |
# cur_wav_file = '.\\training_data\\1_song_(Vocals).wav' | |
pred_face = g_face.infer_on_audio(cur_wav_file, | |
initial_pose=poses_, | |
norm_stats=None, | |
w_pre=False, | |
# id=id, | |
frame=None, | |
am=am, | |
am_sr=am_sr | |
) | |
pred_face = torch.tensor(pred_face).squeeze().to('cuda') | |
# pred_face = torch.zeros([gt.shape[0], 105]) | |
if config.Data.pose.convert_to_6d: | |
pred_jaw = pred_face[:, :6].reshape(pred_face.shape[0], -1, 6) | |
pred_jaw = matrix_to_axis_angle(rotation_6d_to_matrix(pred_jaw)).reshape(pred_face.shape[0], -1) | |
pred_face = pred_face[:, 6:] | |
else: | |
pred_jaw = pred_face[:, :3] | |
pred_face = pred_face[:, 3:] | |
# id = torch.tensor([0], device='cuda') | |
for i in range(num_sample): | |
pred_res = g_body.infer_on_audio(cur_wav_file, | |
initial_pose=poses_, | |
norm_stats=norm_stats, | |
txgfile=None, | |
id=id, | |
# var=var, | |
fps=30, | |
w_pre=False | |
) | |
pred = torch.tensor(pred_res).squeeze().to('cuda') | |
if pred.shape[0] < pred_face.shape[0]: | |
repeat_frame = pred[-1].unsqueeze(dim=0).repeat(pred_face.shape[0] - pred.shape[0], 1) | |
pred = torch.cat([pred, repeat_frame], dim=0) | |
else: | |
pred = pred[:pred_face.shape[0], :] | |
body_or_face = False | |
if pred.shape[1] < 275: | |
body_or_face = True | |
if config.Data.pose.convert_to_6d: | |
pred = pred.reshape(pred.shape[0], -1, 6) | |
pred = matrix_to_axis_angle(rotation_6d_to_matrix(pred)) | |
pred = pred.reshape(pred.shape[0], -1) | |
pred = torch.cat([pred_jaw, pred, pred_face], dim=-1) | |
# pred[:, 9:12] = global_orient | |
pred = part2full(pred, stand) | |
if face: | |
pred = torch.cat([pred[:, :3], body_static.repeat(pred.shape[0], 1), pred[:, -100:]], dim=-1) | |
result_list[0] = poses2pred(result_list[0], stand) | |
# if gt_0 is None: | |
# gt_0 = gt | |
# pred = pred2poses(pred, gt_0) | |
# result_list[0] = poses2poses(result_list[0], gt_0) | |
result_list.append(pred) | |
if g_body2 is not None: | |
pred_res2 = g_body2.infer_on_audio(cur_wav_file, | |
initial_pose=poses_, | |
norm_stats=norm_stats, | |
txgfile=None, | |
# var=var, | |
fps=30, | |
w_pre=False | |
) | |
pred2 = torch.tensor(pred_res2).squeeze().to('cuda') | |
pred2 = torch.cat([pred2[:, :3], pred2[:, 103:], pred2[:, 3:103]], dim=-1) | |
# pred2 = part2full(pred2, stand) | |
# result_list[0] = poses2pred(result_list[0], stand) | |
# if gt_0 is None: | |
# gt_0 = gt | |
# pred2 = pred2poses(pred2, gt_0) | |
# result_list[0] = poses2poses(result_list[0], gt_0) | |
result_list[1] = pred2 | |
vertices_list, _ = get_vertices(smplx_model, betas, result_list, config.Data.pose.expression) | |
result_list = [res.to('cpu') for res in result_list] | |
dict = np.concatenate(result_list[1:], axis=0) | |
file_name = 'visualise/video/' + config.Log.name + '/' + \ | |
cur_wav_file.split('\\')[-1].split('.')[-2].split('/')[-1] | |
np.save(file_name, dict) | |
rendertool._render_sequences(cur_wav_file, vertices_list[1:], stand=stand, face=face) | |
def main(): | |
parser = parse_args() | |
args = parser.parse_args() | |
device = torch.device(args.gpu) | |
torch.cuda.set_device(device) | |
config = load_JsonConfig(args.config_file) | |
face_model_name = args.face_model_name | |
face_model_path = args.face_model_path | |
body_model_name = args.body_model_name | |
body_model_path = args.body_model_path | |
smplx_path = './visualise/' | |
os.environ['smplx_npz_path'] = config.smplx_npz_path | |
os.environ['extra_joint_path'] = config.extra_joint_path | |
os.environ['j14_regressor_path'] = config.j14_regressor_path | |
print('init model...') | |
generator = init_model(body_model_name, body_model_path, args, config) | |
generator2 = None | |
generator_face = init_model(face_model_name, face_model_path, args, config) | |
print('init dataloader...') | |
infer_set, infer_loader, norm_stats = init_dataloader(config.Data.data_root, args.speakers, args, config) | |
print('init smlpx model...') | |
dtype = torch.float64 | |
model_params = dict(model_path=smplx_path, | |
model_type='smplx', | |
create_global_orient=True, | |
create_body_pose=True, | |
create_betas=True, | |
num_betas=300, | |
create_left_hand_pose=True, | |
create_right_hand_pose=True, | |
use_pca=False, | |
flat_hand_mean=False, | |
create_expression=True, | |
num_expression_coeffs=100, | |
num_pca_comps=12, | |
create_jaw_pose=True, | |
create_leye_pose=True, | |
create_reye_pose=True, | |
create_transl=False, | |
# gender='ne', | |
dtype=dtype, ) | |
smplx_model = smpl.create(**model_params).to('cuda') | |
print('init rendertool...') | |
rendertool = RenderTool('visualise/video/' + config.Log.name) | |
infer(config.Data.data_root, generator, generator_face, generator2, args.exp_name, infer_loader, infer_set, device, | |
norm_stats, True, smplx_model, rendertool, args, config) | |
if __name__ == '__main__': | |
main() | |