TalkSHOWLIVE / nets /LS3DCG.py
vscode69's picture
second half
99afdfe
'''
not exactly the same as the official repo but the results are good
'''
import sys
import os
from data_utils.lower_body import c_index_3d, c_index_6d
sys.path.append(os.getcwd())
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import math
from nets.base import TrainWrapperBaseClass
from nets.layers import SeqEncoder1D
from losses import KeypointLoss, L1Loss, KLLoss
from data_utils.utils import get_melspec, get_mfcc_psf, get_mfcc_ta
from nets.utils import denormalize
class Conv1d_tf(nn.Conv1d):
"""
Conv1d with the padding behavior from TF
modified from https://github.com/mlperf/inference/blob/482f6a3beb7af2fb0bd2d91d6185d5e71c22c55f/others/edge/object_detection/ssd_mobilenet/pytorch/utils.py
"""
def __init__(self, *args, **kwargs):
super(Conv1d_tf, self).__init__(*args, **kwargs)
self.padding = kwargs.get("padding", "same")
def _compute_padding(self, input, dim):
input_size = input.size(dim + 2)
filter_size = self.weight.size(dim + 2)
effective_filter_size = (filter_size - 1) * self.dilation[dim] + 1
out_size = (input_size + self.stride[dim] - 1) // self.stride[dim]
total_padding = max(
0, (out_size - 1) * self.stride[dim] + effective_filter_size - input_size
)
additional_padding = int(total_padding % 2 != 0)
return additional_padding, total_padding
def forward(self, input):
if self.padding == "VALID":
return F.conv1d(
input,
self.weight,
self.bias,
self.stride,
padding=0,
dilation=self.dilation,
groups=self.groups,
)
rows_odd, padding_rows = self._compute_padding(input, dim=0)
if rows_odd:
input = F.pad(input, [0, rows_odd])
return F.conv1d(
input,
self.weight,
self.bias,
self.stride,
padding=(padding_rows // 2),
dilation=self.dilation,
groups=self.groups,
)
def ConvNormRelu(in_channels, out_channels, type='1d', downsample=False, k=None, s=None, norm='bn', padding='valid'):
if k is None and s is None:
if not downsample:
k = 3
s = 1
else:
k = 4
s = 2
if type == '1d':
conv_block = Conv1d_tf(in_channels, out_channels, kernel_size=k, stride=s, padding=padding)
if norm == 'bn':
norm_block = nn.BatchNorm1d(out_channels)
elif norm == 'ln':
norm_block = nn.LayerNorm(out_channels)
elif type == '2d':
conv_block = Conv2d_tf(in_channels, out_channels, kernel_size=k, stride=s, padding=padding)
norm_block = nn.BatchNorm2d(out_channels)
else:
assert False
return nn.Sequential(
conv_block,
norm_block,
nn.LeakyReLU(0.2, True)
)
class Decoder(nn.Module):
def __init__(self, in_ch, out_ch):
super(Decoder, self).__init__()
self.up1 = nn.Sequential(
ConvNormRelu(in_ch // 2 + in_ch, in_ch // 2),
ConvNormRelu(in_ch // 2, in_ch // 2),
nn.Upsample(scale_factor=2, mode='nearest')
)
self.up2 = nn.Sequential(
ConvNormRelu(in_ch // 4 + in_ch // 2, in_ch // 4),
ConvNormRelu(in_ch // 4, in_ch // 4),
nn.Upsample(scale_factor=2, mode='nearest')
)
self.up3 = nn.Sequential(
ConvNormRelu(in_ch // 8 + in_ch // 4, in_ch // 8),
ConvNormRelu(in_ch // 8, in_ch // 8),
nn.Conv1d(in_ch // 8, out_ch, 1, 1)
)
def forward(self, x, x1, x2, x3):
x = F.interpolate(x, x3.shape[2])
x = torch.cat([x, x3], dim=1)
x = self.up1(x)
x = F.interpolate(x, x2.shape[2])
x = torch.cat([x, x2], dim=1)
x = self.up2(x)
x = F.interpolate(x, x1.shape[2])
x = torch.cat([x, x1], dim=1)
x = self.up3(x)
return x
class EncoderDecoder(nn.Module):
def __init__(self, n_frames, each_dim):
super().__init__()
self.n_frames = n_frames
self.down1 = nn.Sequential(
ConvNormRelu(64, 64, '1d', False),
ConvNormRelu(64, 128, '1d', False),
)
self.down2 = nn.Sequential(
ConvNormRelu(128, 128, '1d', False),
ConvNormRelu(128, 256, '1d', False),
)
self.down3 = nn.Sequential(
ConvNormRelu(256, 256, '1d', False),
ConvNormRelu(256, 512, '1d', False),
)
self.down4 = nn.Sequential(
ConvNormRelu(512, 512, '1d', False),
ConvNormRelu(512, 1024, '1d', False),
)
self.down = nn.MaxPool1d(kernel_size=2)
self.up = nn.Upsample(scale_factor=2, mode='nearest')
self.face_decoder = Decoder(1024, each_dim[0] + each_dim[3])
self.body_decoder = Decoder(1024, each_dim[1])
self.hand_decoder = Decoder(1024, each_dim[2])
def forward(self, spectrogram, time_steps=None):
if time_steps is None:
time_steps = self.n_frames
x1 = self.down1(spectrogram)
x = self.down(x1)
x2 = self.down2(x)
x = self.down(x2)
x3 = self.down3(x)
x = self.down(x3)
x = self.down4(x)
x = self.up(x)
face = self.face_decoder(x, x1, x2, x3)
body = self.body_decoder(x, x1, x2, x3)
hand = self.hand_decoder(x, x1, x2, x3)
return face, body, hand
class Generator(nn.Module):
def __init__(self,
each_dim,
training=False,
device=None
):
super().__init__()
self.training = training
self.device = device
self.encoderdecoder = EncoderDecoder(15, each_dim)
def forward(self, in_spec, time_steps=None):
if time_steps is not None:
self.gen_length = time_steps
face, body, hand = self.encoderdecoder(in_spec)
out = torch.cat([face, body, hand], dim=1)
out = out.transpose(1, 2)
return out
class Discriminator(nn.Module):
def __init__(self, input_dim):
super().__init__()
self.net = nn.Sequential(
ConvNormRelu(input_dim, 128, '1d'),
ConvNormRelu(128, 256, '1d'),
nn.MaxPool1d(kernel_size=2),
ConvNormRelu(256, 256, '1d'),
ConvNormRelu(256, 512, '1d'),
nn.MaxPool1d(kernel_size=2),
ConvNormRelu(512, 512, '1d'),
ConvNormRelu(512, 1024, '1d'),
nn.MaxPool1d(kernel_size=2),
nn.Conv1d(1024, 1, 1, 1),
nn.Sigmoid()
)
def forward(self, x):
x = x.transpose(1, 2)
out = self.net(x)
return out
class TrainWrapper(TrainWrapperBaseClass):
def __init__(self, args, config) -> None:
self.args = args
self.config = config
self.device = torch.device(self.args.gpu)
self.global_step = 0
self.convert_to_6d = self.config.Data.pose.convert_to_6d
self.init_params()
self.generator = Generator(
each_dim=self.each_dim,
training=not self.args.infer,
device=self.device,
).to(self.device)
self.discriminator = Discriminator(
input_dim=self.each_dim[1] + self.each_dim[2] + 64
).to(self.device)
if self.convert_to_6d:
self.c_index = c_index_6d
else:
self.c_index = c_index_3d
self.MSELoss = KeypointLoss().to(self.device)
self.L1Loss = L1Loss().to(self.device)
super().__init__(args, config)
def init_params(self):
scale = 1
global_orient = round(0 * scale)
leye_pose = reye_pose = round(0 * scale)
jaw_pose = round(3 * scale)
body_pose = round((63 - 24) * scale)
left_hand_pose = right_hand_pose = round(45 * scale)
expression = 100
b_j = 0
jaw_dim = jaw_pose
b_e = b_j + jaw_dim
eye_dim = leye_pose + reye_pose
b_b = b_e + eye_dim
body_dim = global_orient + body_pose
b_h = b_b + body_dim
hand_dim = left_hand_pose + right_hand_pose
b_f = b_h + hand_dim
face_dim = expression
self.dim_list = [b_j, b_e, b_b, b_h, b_f]
self.full_dim = jaw_dim + eye_dim + body_dim + hand_dim
self.pose = int(self.full_dim / round(3 * scale))
self.each_dim = [jaw_dim, eye_dim + body_dim, hand_dim, face_dim]
def __call__(self, bat):
assert (not self.args.infer), "infer mode"
self.global_step += 1
loss_dict = {}
aud, poses = bat['aud_feat'].to(self.device).to(torch.float32), bat['poses'].to(self.device).to(torch.float32)
expression = bat['expression'].to(self.device).to(torch.float32)
jaw = poses[:, :3, :]
poses = poses[:, self.c_index, :]
pred = self.generator(in_spec=aud)
D_loss, D_loss_dict = self.get_loss(
pred_poses=pred.detach(),
gt_poses=poses,
aud=aud,
mode='training_D',
)
self.discriminator_optimizer.zero_grad()
D_loss.backward()
self.discriminator_optimizer.step()
G_loss, G_loss_dict = self.get_loss(
pred_poses=pred,
gt_poses=poses,
aud=aud,
expression=expression,
jaw=jaw,
mode='training_G',
)
self.generator_optimizer.zero_grad()
G_loss.backward()
self.generator_optimizer.step()
total_loss = None
loss_dict = {}
for key in list(D_loss_dict.keys()) + list(G_loss_dict.keys()):
loss_dict[key] = G_loss_dict.get(key, 0) + D_loss_dict.get(key, 0)
return total_loss, loss_dict
def get_loss(self,
pred_poses,
gt_poses,
aud=None,
jaw=None,
expression=None,
mode='training_G',
):
loss_dict = {}
aud = aud.transpose(1, 2)
gt_poses = gt_poses.transpose(1, 2)
gt_aud = torch.cat([gt_poses, aud], dim=2)
pred_aud = torch.cat([pred_poses[:, :, 103:], aud], dim=2)
if mode == 'training_D':
dis_real = self.discriminator(gt_aud)
dis_fake = self.discriminator(pred_aud)
dis_error = self.MSELoss(torch.ones_like(dis_real).to(self.device), dis_real) + self.MSELoss(
torch.zeros_like(dis_fake).to(self.device), dis_fake)
loss_dict['dis'] = dis_error
return dis_error, loss_dict
elif mode == 'training_G':
jaw_loss = self.L1Loss(pred_poses[:, :, :3], jaw.transpose(1, 2))
face_loss = self.MSELoss(pred_poses[:, :, 3:103], expression.transpose(1, 2))
body_loss = self.L1Loss(pred_poses[:, :, 103:142], gt_poses[:, :, :39])
hand_loss = self.L1Loss(pred_poses[:, :, 142:], gt_poses[:, :, 39:])
l1_loss = jaw_loss + face_loss + body_loss + hand_loss
dis_output = self.discriminator(pred_aud)
gen_error = self.MSELoss(torch.ones_like(dis_output).to(self.device), dis_output)
gen_loss = self.config.Train.weights.keypoint_loss_weight * l1_loss + self.config.Train.weights.gan_loss_weight * gen_error
loss_dict['gen'] = gen_error
loss_dict['jaw_loss'] = jaw_loss
loss_dict['face_loss'] = face_loss
loss_dict['body_loss'] = body_loss
loss_dict['hand_loss'] = hand_loss
return gen_loss, loss_dict
else:
raise ValueError(mode)
def infer_on_audio(self, aud_fn, fps=30, initial_pose=None, norm_stats=None, id=None, B=1, **kwargs):
output = []
assert self.args.infer, "train mode"
self.generator.eval()
if self.config.Data.pose.normalization:
assert norm_stats is not None
data_mean = norm_stats[0]
data_std = norm_stats[1]
pre_length = self.config.Data.pose.pre_pose_length
generate_length = self.config.Data.pose.generate_length
# assert pre_length == initial_pose.shape[-1]
# pre_poses = initial_pose.permute(0, 2, 1).to(self.device).to(torch.float32)
# B = pre_poses.shape[0]
aud_feat = get_mfcc_ta(aud_fn, sr=22000, fps=fps, smlpx=True, type='mfcc').transpose(1, 0)
num_poses_to_generate = aud_feat.shape[-1]
aud_feat = aud_feat[np.newaxis, ...].repeat(B, axis=0)
aud_feat = torch.tensor(aud_feat, dtype=torch.float32).to(self.device)
with torch.no_grad():
pred_poses = self.generator(aud_feat)
pred_poses = pred_poses.cpu().numpy()
output = pred_poses.squeeze()
return output
def generate(self, aud, id):
self.generator.eval()
pred_poses = self.generator(aud)
return pred_poses
if __name__ == '__main__':
from trainer.options import parse_args
parser = parse_args()
args = parser.parse_args(
['--exp_name', '0', '--data_root', '0', '--speakers', '0', '--pre_pose_length', '4', '--generate_length', '64',
'--infer'])
generator = TrainWrapper(args)
aud_fn = '../sample_audio/jon.wav'
initial_pose = torch.randn(64, 108, 4)
norm_stats = (np.random.randn(108), np.random.randn(108))
output = generator.infer_on_audio(aud_fn, initial_pose, norm_stats)
print(output.shape)