|
|
|
--- |
|
title: LaVie |
|
emoji: π |
|
colorFrom: pink |
|
colorTo: pink |
|
sdk: gradio |
|
sdk_version: 4.3.0 |
|
app_file: base/app.py |
|
pinned: false |
|
--- |
|
|
|
# LaVie: High-Quality Video Generation with Cascaded Latent Diffusion Models |
|
|
|
This repository is the official PyTorch implementation of [LaVie](https://arxiv.org/abs/2309.15103). |
|
|
|
**LaVie** is a Text-to-Video (T2V) generation framework, and main part of video generation system [Vchitect](http://vchitect.intern-ai.org.cn/). |
|
|
|
[![arXiv](https://img.shields.io/badge/arXiv-2307.04725-b31b1b.svg)](https://arxiv.org/abs/2309.15103) |
|
[![Project Page](https://img.shields.io/badge/Project-Website-green)](https://vchitect.github.io/LaVie-project/) |
|
<!-- |
|
[![Open in OpenXLab](https://cdn-static.openxlab.org.cn/app-center/openxlab_app.svg)]() |
|
[![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-yellow)]() |
|
--> |
|
|
|
<img src="lavie.gif" width="800"> |
|
|
|
## Installation |
|
``` |
|
conda env create -f environment.yml |
|
conda activate lavie |
|
``` |
|
|
|
## Download Pre-Trained models |
|
Download [pre-trained models](https://huggingface.co/YaohuiW/LaVie/tree/main), [stable diffusion 1.4](https://huggingface.co/CompVis/stable-diffusion-v1-4/tree/main), [stable-diffusion-x4-upscaler](https://huggingface.co/stabilityai/stable-diffusion-x4-upscaler/tree/main) to `./pretrained_models`. You should be able to see the following: |
|
``` |
|
βββ pretrained_models |
|
β βββ lavie_base.pt |
|
β βββ lavie_interpolation.pt |
|
β βββ lavie_vsr.pt |
|
β βββ stable-diffusion-v1-4 |
|
β β βββ ... |
|
βββ βββ stable-diffusion-x4-upscaler |
|
βββ ... |
|
``` |
|
|
|
## Inference |
|
The inference contains **Base T2V**, **Video Interpolation** and **Video Super-Resolution** three steps. We provide several options to generate videos: |
|
* **Step1**: 320 x 512 resolution, 16 frames |
|
* **Step1+Step2**: 320 x 512 resolution, 61 frames |
|
* **Step1+Step3**: 1280 x 2048 resolution, 16 frames |
|
* **Step1+Step2+Step3**: 1280 x 2048 resolution, 61 frames |
|
|
|
Feel free to try different options:) |
|
|
|
|
|
### Step1. Base T2V |
|
Run following command to generate videos from base T2V model. |
|
``` |
|
cd base |
|
python pipelines/sample.py --config configs/sample.yaml |
|
``` |
|
Edit `text_prompt` in `configs/sample.yaml` to change prompt, results will be saved under `./res/base`. |
|
|
|
### Step2 (optional). Video Interpolation |
|
Run following command to conduct video interpolation. |
|
``` |
|
cd interpolation |
|
python sample.py --config configs/sample.yaml |
|
``` |
|
The default input video path is `./res/base`, results will be saved under `./res/interpolation`. In `configs/sample.yaml`, you could modify default `input_folder` with `YOUR_INPUT_FOLDER` in `configs/sample.yaml`. Input videos should be named as `prompt1.mp4`, `prompt2.mp4`, ... and put under `YOUR_INPUT_FOLDER`. Launching the code will process all the input videos in `input_folder`. |
|
|
|
|
|
### Step3 (optional). Video Super-Resolution |
|
Run following command to conduct video super-resolution. |
|
``` |
|
cd vsr |
|
python sample.py --config configs/sample.yaml |
|
``` |
|
The default input video path is `./res/base` and results will be saved under `./res/vsr`. You could modify default `input_path` with `YOUR_INPUT_FOLDER` in `configs/sample.yaml`. Smiliar to Step2, input videos should be named as `prompt1.mp4`, `prompt2.mp4`, ... and put under `YOUR_INPUT_FOLDER`. Launching the code will process all the input videos in `input_folder`. |
|
|
|
|
|
## BibTex |
|
```bibtex |
|
@article{wang2023lavie, |
|
title={LAVIE: High-Quality Video Generation with Cascaded Latent Diffusion Models}, |
|
author={Wang, Yaohui and Chen, Xinyuan and Ma, Xin and Zhou, Shangchen and Huang, Ziqi and Wang, Yi and Yang, Ceyuan and He, Yinan and Yu, Jiashuo and Yang, Peiqing and others}, |
|
journal={arXiv preprint arXiv:2309.15103}, |
|
year={2023} |
|
} |
|
``` |
|
|
|
## Acknowledgements |
|
The code is buit upon [diffusers](https://github.com/huggingface/diffusers) and [Stable Diffusion](https://github.com/CompVis/stable-diffusion), we thank all the contributors for open-sourcing. |
|
|
|
|
|
## License |
|
The code is licensed under Apache-2.0, model weights are fully open for academic research and also allow **free** commercial usage. To apply for a commercial license, please fill in the [application form](). |