Spaces:
Sleeping
Sleeping
File size: 12,680 Bytes
80eac1a 16f5238 80eac1a 8a2f2ee 80eac1a 8a2f2ee 80eac1a 8a2f2ee 80eac1a 8a2f2ee 27546d4 80eac1a 8a2f2ee 50f5a57 80eac1a 8a2f2ee 80eac1a 27546d4 80eac1a 27546d4 80eac1a 8a2f2ee 80eac1a 27546d4 8a2f2ee 27546d4 8a2f2ee 16f5238 8a2f2ee 27546d4 8a2f2ee 27546d4 8a2f2ee 27546d4 8a2f2ee 27546d4 8a2f2ee 4bcb6cb 8a2f2ee 16f5238 8a2f2ee 80eac1a 27546d4 80eac1a 27546d4 80eac1a 8a2f2ee 50f5a57 80eac1a 50f5a57 80eac1a 27546d4 80eac1a 27546d4 80eac1a 50f5a57 80eac1a 27546d4 50f5a57 80eac1a 27546d4 80eac1a 27546d4 80eac1a 50f5a57 8a2f2ee 80eac1a 27546d4 8a2f2ee 80eac1a 27546d4 50f5a57 80eac1a 50f5a57 80eac1a 16f5238 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 |
import os
import cv2
import io
import pandas as pd
import PIL.Image as Image
import gradio as gr
import numpy as np
import matplotlib.pyplot as plt
import math
import time
from sklearn.neighbors import KernelDensity
from pathlib import Path
from ultralytics import ASSETS, YOLO
from sklearn.model_selection import GridSearchCV
DIR_NAME = Path(os.path.dirname(__file__))
DETECTION_MODEL_n = os.path.join(DIR_NAME, 'models', 'YOLOv8-N_CNO_Detection.pt')
DETECTION_MODEL_s = os.path.join(DIR_NAME, 'models', 'YOLOv8-S_CNO_Detection.pt')
DETECTION_MODEL_m = os.path.join(DIR_NAME, 'models', 'YOLOv8-M_CNO_Detection.pt')
DETECTION_MODEL_l = os.path.join(DIR_NAME, 'models', 'YOLOv8-L_CNO_Detection.pt')
DETECTION_MODEL_x = os.path.join(DIR_NAME, 'models', 'YOLOv8-X_CNO_Detection.pt')
# MODEL = os.path.join(DIR_NAME, 'models', 'YOLOv8-M_CNO_Detection.pt')
# model = YOLO(MODEL)
# cno_df = pd.DataFrame()
def predict_image(name, img_h, img_w, model, img, conf_threshold, iou_threshold):
"""Predicts and plots labeled objects in an image using YOLOv8 model with adjustable confidence and IOU thresholds."""
gr.Info("Starting process")
# gr.Warning("Name is empty")
if name == "":
gr.Warning("Name is empty")
if model == 'YOLOv8-N':
CNO_model = YOLO(DETECTION_MODEL_n)
elif model == 'YOLOv8-S':
CNO_model = YOLO(DETECTION_MODEL_s)
elif model == 'YOLOv8-M':
CNO_model = YOLO(DETECTION_MODEL_m)
elif model == 'YOLOv8-L':
CNO_model = YOLO(DETECTION_MODEL_l)
else:
CNO_model = YOLO(DETECTION_MODEL_x)
results = CNO_model.predict(
source=img,
conf=conf_threshold,
iou=iou_threshold,
show_labels=False,
show_conf=False,
imgsz=512,
max_det=1200
)
cno_count = []
cno_col = []
afm_image = []
cno_image = []
kde_image = []
file_name = []
ecti_score = []
# total_layer_area = []
# total_layer_cno = []
# total_layer_density = []
# avg_area_col = []
# total_area_col = []
for idx, result in enumerate(results):
cno = len(result.boxes)
file_label = img[idx].split(os.sep)[-1]
# single_layer_area = []
# single_layer_cno = []
single_layer_density = []
total_area = 0
if cno < 5:
# avg_area_col.append(np.nan)
# total_area_col.append(np.nan)
# nan_arr = np.empty([25])
# nan_arr[:] = np.nan
ecti_score.append(np.nan)
# total_layer_area.append(nan_arr)
# total_layer_cno.append(nan_arr)
# total_layer_density.append(nan_arr)
else:
cno_coor = np.empty([cno, 2], dtype=int)
for j in range(cno):
# w = r.boxes.xywh[j][2]
# h = r.boxes.xywh[j][3]
# area = (math.pi * w * h / 4) * 20 * 20 / (512 * 512)
# total_area += area
# bbox_img = r.orig_img
x = round(result.boxes.xywh[j][0].item())
y = round(result.boxes.xywh[j][1].item())
x1 = round(result.boxes.xyxy[j][0].item())
y1 = round(result.boxes.xyxy[j][1].item())
x2 = round(result.boxes.xyxy[j][2].item())
y2 = round(result.boxes.xyxy[j][3].item())
cno_coor[j] = [x, y]
cv2.rectangle(result.orig_img, (x1, y1), (x2, y2), (0, 255, 0), 1)
im_array = result.orig_img
afm_image.append([img[idx], file_label])
cno_image.append([Image.fromarray(im_array[..., ::-1]), file_label])
cno_count.append(cno)
file_name.append(file_label)
### ============================
kde = KernelDensity(metric='euclidean', kernel='gaussian', algorithm='ball_tree')
# Finding Optimal Bandwidth
ti = time.time()
if cno < 7:
fold = cno
else:
fold = 7
gs = GridSearchCV(kde, {'bandwidth': np.linspace(20, 60, 41)}, cv=fold)
cv = gs.fit(cno_coor)
bw = cv.best_params_['bandwidth']
tf = time.time()
print("Finding optimal bandwidth={:.2f} ({:n}-fold cross-validation): {:.2f} secs".format(bw, cv.cv,
(tf - ti)))
kde.bandwidth = bw
_ = kde.fit(cno_coor)
xgrid = np.arange(0, result.orig_img.shape[1], 1)
ygrid = np.arange(0, result.orig_img.shape[0], 1)
xv, yv = np.meshgrid(xgrid, ygrid)
xys = np.vstack([xv.ravel(), yv.ravel()]).T
gdim = xv.shape
zi = np.arange(xys.shape[0])
zXY = xys
z = np.exp(kde.score_samples(zXY))
zg = -9999 + np.zeros(xys.shape[0])
zg[zi] = z
xyz = np.hstack((xys[:, :2], zg[:, None]))
x = xyz[:, 0].reshape(gdim)
y = xyz[:, 1].reshape(gdim)
z = xyz[:, 2].reshape(gdim)
levels = np.linspace(0, z.max(), 26)
print("levels", levels)
for j in range(len(levels) - 1):
area = np.argwhere(z >= levels[j])
area_concatenate = numcat(area)
CNO_concatenate = numcat(cno_coor)
ecno = np.count_nonzero(np.isin(area_concatenate, CNO_concatenate))
layer_area = area.shape[0]
if layer_area == 0:
density = np.round(0.0, 4)
else:
density = np.round((ecno / layer_area) * result.orig_img.shape[0] * result.orig_img.shape[1] / (img_h * img_w), 4)
print("Level {}: Area={}, CNO={}, density={}".format(j, layer_area, ecno, density))
# single_layer_area.append(layer_area)
# single_layer_cno.append(ecno)
single_layer_density.append(density)
# total_layer_area.append(single_layer_area)
# total_layer_cno.append(single_layer_cno)
# total_layer_density.append(single_layer_density)
# print(sum_range(single_layer_density, 10, 14))
# print("deb ", single_layer_density)
ecti_score.append(np.round(sum_range(single_layer_density, 10, 14) / 5.0, 2))
# Plot CNO Distribution
plt.contourf(x, y, z, levels=levels, cmap=plt.cm.bone)
plt.axis('off')
# plt.gcf().set_size_inches(8, 8)
plt.gcf().set_size_inches(8 * (gdim[1] / gdim[0]), 8)
plt.gca().invert_yaxis()
plt.xlim(0, gdim[1] - 1)
plt.ylim(gdim[0] - 1, 0)
plt.plot()
img_buf = io.BytesIO()
plt.savefig(img_buf, format='png', bbox_inches='tight', pad_inches=0)
kde_im = Image.open(img_buf)
kde_image.append([kde_im, file_label])
data = {
"Files": file_name,
"CNO Count": cno_count,
"ECTI Score": ecti_score
}
# load data into a DataFrame object:
cno_df = pd.DataFrame(data)
return cno_df, afm_image, cno_image, kde_image
def numcat(arr):
arr_size = arr.shape[0]
arr_cat = np.empty([arr_size, 1], dtype=np.int32)
for i in range(arr.shape[0]):
arr_cat[i] = arr[i][0] * 1000 + arr[i][1]
return arr_cat
def highlight_max(s, props=''):
return np.where(s == np.nanmax(s.values), props, '')
def highlight_df(df, data: gr.SelectData):
styler = df.style.apply(lambda x: ['background: lightgreen'
if x.Files == data.value["caption"]
else None for i in x], axis=1)
# print("selected", data.value["caption"])
return data.value["caption"], styler
def reset():
name_textbox = ""
img_h = 20
img_w = 20
gender_radio = None
age_slider = 0
fitzpatrick = 1
history = []
model_radio = "YOLOv8-M"
input_files = []
conf_slider = 0.2
iou_slider = 0.5
analysis_results = []
afm_gallery = []
cno_gallery = []
test_label = ""
return name_textbox, img_h, img_w, gender_radio, age_slider, fitzpatrick, history, model_radio, input_files, conf_slider, \
iou_slider, analysis_results, afm_gallery, cno_gallery, test_label
def sum_range(l,a,b):
s = 0
for i in range(a,b+1):
s += l[i]
return s
with gr.Blocks(title="AFM AI Analysis", theme="default") as app:
with gr.Row():
with gr.Column():
# gr.Markdown("User Information")
with gr.Accordion("User Information", open=True):
with gr.Row():
name_textbox = gr.Textbox(label="Sample")
with gr.Row():
img_h = gr.Number(label="Image Height (μm)", value=20, interactive=True)
img_w = gr.Number(label="Image Width (μm)", value=20, interactive=True)
with gr.Row():
gender_radio = gr.Radio(["Male", "Female"], label="Gender", interactive=True, scale=1)
age_slider = gr.Slider(minimum=0, maximum=100, step=1, value=0, label="Age", interactive=True, scale=2)
with gr.Group():
fitzpatrick = gr.Slider(minimum=1, maximum=6, step=1, value=1, label="Fitzpatrick", interactive=True)
history = gr.Checkboxgroup(["Familial Disease", "Allergic Rhinitis", "Asthma"], label="Medical History", interactive=True)
input_files = gr.File(file_types=["image"], file_count="multiple", label="Upload Image")
# gr.Markdown("Model Configuration")
with gr.Accordion("Model Configuration", open=False):
model_radio = gr.Radio(["YOLOv8-N", "YOLOv8-S", "YOLOv8-M", "YOLOv8-L", "YOLOv8-X"], label="Model Selection", value="YOLOv8-M")
conf_slider = gr.Slider(minimum=0, maximum=1, value=0.2, label="Confidence threshold")
iou_slider = gr.Slider(minimum=0, maximum=1, value=0.5, label="IoU threshold")
with gr.Row():
analyze_btn = gr.Button("Analyze")
clear_btn = gr.Button("Reset")
with gr.Column():
analysis_results = gr.Dataframe(headers=["Files", "CNO Count"], interactive=False)
# cno_label = gr.Label(label="Analysis Results")
with gr.Tab("AFM"):
afm_gallery = gr.Gallery(label="Result", show_label=True, columns=3, object_fit="contain")
with gr.Tab("CNO"):
cno_gallery = gr.Gallery(label="Result", show_label=True, columns=3, object_fit="contain")
with gr.Tab("KDE"):
kde_gallery = gr.Gallery(label="Result", show_label=True, columns=3, object_fit="contain")
test_label = gr.Label(label="Analysis Results")
# cno_img = gr.Image(type="pil", label="Result")
analyze_btn.click(
fn=predict_image,
inputs=[name_textbox, img_h, img_w, model_radio, input_files, conf_slider, iou_slider],
outputs=[analysis_results, afm_gallery, cno_gallery, kde_gallery]
)
clear_btn.click(reset, outputs=[name_textbox, img_h, img_w, gender_radio, age_slider, fitzpatrick, history, model_radio,
input_files, conf_slider, iou_slider, analysis_results, afm_gallery, cno_gallery,
test_label])
afm_gallery.select(highlight_df, inputs=analysis_results, outputs=[test_label, analysis_results])
cno_gallery.select(highlight_df, inputs=analysis_results, outputs=[test_label, analysis_results])
"""
iface = gr.Interface(
fn=predict_image,
inputs=[
gr.Textbox(label="User Name"),
gr.Radio(["YOLOv8-N", "YOLOv8-S", "YOLOv8-M", "YOLOv8-L", "YOLOv8-X"], value="YOLOv8-M"),
# gr.Image(type="filepath", label="Upload Image"),
gr.File(file_types=["image"], file_count="multiple", label="Upload Image"),
gr.Slider(minimum=0, maximum=1, value=0.2, label="Confidence threshold"),
gr.Slider(minimum=0, maximum=1, value=0.5, label="IoU threshold")
],
outputs=[gr.Label(label="Analysis Results"), gr.Image(type="pil", label="Result")],
title="AFM AI Analysis",
description="Upload images for inference. The YOLOv8-M model is used by default.",
theme=gr.themes.Default()
)
"""
if __name__ == '__main__':
# iface.launch()
# app.launch(share=False, auth=[('jenhw', 'admin'), ('user', 'admin')],
# auth_message="Enter your username and password")
app.launch(share=False)
|