jerpint's picture
update imports
49bd8e8
import os
from typing import Optional, Tuple
import gradio as gr
import pandas as pd
from buster.completers import Completion
from buster.utils import extract_zip
from embed_docs import crawl_and_embed_docs
import cfg
from cfg import setup_buster
# Typehint for chatbot history
ChatHistory = list[list[Optional[str], Optional[str]]]
# Because this is a one-click deploy app, we will be relying on env. variables being set
openai_api_key = os.getenv("OPENAI_API_KEY") # Mandatory for app to work
if os.path.exists("outputs.zip"):
print("Found outputs.zip, Skipping crawl and embed.")
extract_zip("outputs.zip", output_path="outputs")
else:
readthedocs_url = os.getenv("READTHEDOCS_URL") # Mandatory for app to work as intended
readthedocs_version = os.getenv("READTHEDOCS_VERSION")
if openai_api_key is None:
print(
"Warning: No OPENAI_API_KEY detected. Set it with 'export OPENAI_API_KEY=sk-...'."
)
if readthedocs_url is None:
raise ValueError(
"No READTHEDOCS_URL detected. Set it with e.g. 'export READTHEDOCS_URL=https://orion.readthedocs.io/'"
)
if readthedocs_version is None:
print(
"""
Warning: No READTHEDOCS_VERSION detected. If multiple versions of the docs exist, they will all be scraped.
Set it with e.g. 'export READTHEDOCS_VERSION=en/stable'
"""
)
# scrape and embed content from readthedocs website
crawl_and_embed_docs(
homepage_url=readthedocs_url,
save_directory="outputs", # Expected to be in outputs/ by buster cfg
target_version=readthedocs_version,
)
# Setup RAG agent
buster = setup_buster(cfg.buster_cfg)
# Setup Gradio app
def add_user_question(
user_question: str, chat_history: Optional[ChatHistory] = None
) -> ChatHistory:
"""Adds a user's question to the chat history.
If no history is provided, the first element of the history will be the user conversation.
"""
if chat_history is None:
chat_history = []
chat_history.append([user_question, None])
return chat_history
def format_sources(matched_documents: pd.DataFrame) -> str:
if len(matched_documents) == 0:
return ""
matched_documents.similarity_to_answer = (
matched_documents.similarity_to_answer * 100
)
# drop duplicate pages (by title), keep highest ranking ones
matched_documents = matched_documents.sort_values(
"similarity_to_answer", ascending=False
).drop_duplicates("title", keep="first")
documents_answer_template: str = "πŸ“ Here are the sources I used to answer your question:\n\n{documents}\n\n{footnote}"
document_template: str = "[πŸ”— {document.title}]({document.url}), relevance: {document.similarity_to_answer:2.1f} %"
documents = "\n".join(
[
document_template.format(document=document)
for _, document in matched_documents.iterrows()
]
)
footnote: str = "I'm a bot πŸ€– and not always perfect."
return documents_answer_template.format(documents=documents, footnote=footnote)
def add_sources(history, completion):
if completion.answer_relevant:
formatted_sources = format_sources(completion.matched_documents)
history.append([None, formatted_sources])
return history
def chat(chat_history: ChatHistory) -> Tuple[ChatHistory, Completion]:
"""Answer a user's question using retrieval augmented generation."""
# We assume that the question is the user's last interaction
user_input = chat_history[-1][0]
# Do retrieval + augmented generation with buster
completion = buster.process_input(user_input)
# Stream tokens one at a time to the user
chat_history[-1][1] = ""
for token in completion.answer_generator:
chat_history[-1][1] += token
yield chat_history, completion
demo = gr.Blocks()
with demo:
with gr.Row():
gr.Markdown("<h1><center>RAGTheDocs - docs.mila.quebec </center></h1>")
gr.Markdown(
"""
## About
RAGTheDocs allows you to ask questions found on the docs.mila.quebec website.
Try it out by asking a question below about [mila docs](https://docs.mila.quebec/).
## How it works
This app uses [Buster πŸ€–](https://github.com/jerpint/buster) and ChatGPT to search the docs for relevant info and
answer questions.
View the code on the [project homepage](https://github.com/jerpint/RAGTheDocs)
"""
)
chatbot = gr.Chatbot()
with gr.Row():
question = gr.Textbox(
label="What's your question?",
placeholder="Type your question here...",
lines=1,
)
submit = gr.Button(value="Send", variant="secondary")
examples = gr.Examples(
examples=[
"How can I request a job with multiple GPUs?",
"Where should I store large datasets?",
"how can i view my GPU usage?",
],
inputs=question,
)
response = gr.State()
# fmt: off
gr.on(
triggers=[submit.click, question.submit],
fn=add_user_question,
inputs=[question],
outputs=[chatbot]
).then(
chat,
inputs=[chatbot],
outputs=[chatbot, response]
).then(
add_sources,
inputs=[chatbot, response],
outputs=[chatbot]
)
demo.launch()