File size: 4,047 Bytes
5425743
 
 
 
 
36961e5
 
5425743
36961e5
 
3da13dc
0e92ec6
36961e5
 
 
 
 
 
 
 
 
 
 
 
 
 
80fa73a
 
 
5425743
d8f08b3
5425743
 
 
 
 
 
 
7e48556
 
5425743
 
 
5eac62a
5425743
 
 
32ca267
d8f08b3
5eac62a
2345e9f
d8f08b3
5425743
 
c226973
5425743
 
 
 
 
 
27ad720
5425743
 
 
 
 
 
27ad720
5425743
 
 
 
 
 
 
27ad720
5425743
 
 
 
 
 
c226973
5425743
 
 
 
 
59cc0d3
 
5425743
 
 
 
 
 
 
d8f08b3
 
 
 
5425743
 
2345e9f
3da13dc
5425743
 
 
 
 
 
843d100
3da13dc
5425743
b8d1d45
5425743
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
from tuneavideo.pipelines.pipeline_tuneavideo import TuneAVideoPipeline
from tuneavideo.models.unet import UNet3DConditionModel
from tuneavideo.util import save_videos_grid
import torch
import gradio as gr
from bs4 import BeautifulSoup
import requests

def model_url_list():
    url_list = []
    for i in range(0, 7):
        url_list.append(f"https://huggingface.co/models?p={i}&sort=downloads&search=sd-dreambooth-library")
    return url_list

def data_scraping(url_list):
    model_list = []
    for url in url_list:
        response = requests.get(url)
        soup = BeautifulSoup(response.text, "html.parser")
        div_class = 'grid gap-5 grid-cols-1 2xl:grid-cols-2'
        div = soup.find('div', {'class': div_class})
        for a in div.find_all('a', href=True):
            model_list.append(a['href'])
    return model_list

model_list = data_scraping(model_url_list())
for i in range(len(model_list)):
    model_list[i] = model_list[i][1:]
    
def tune_video_predict(
    pipe_id: str,
    prompt: str,
    video_length: int,
    height: int,
    width: int,
    num_inference_steps: int,
    guidance_scale: float,
):
    unet = UNet3DConditionModel.from_pretrained("Tune-A-Video-library/a-man-is-surfing", subfolder='unet', torch_dtype=torch.float16).to('cuda')
    pipe = TuneAVideoPipeline.from_pretrained(pipe_id, unet=unet, torch_dtype=torch.float16).to("cuda")
    video = pipe(prompt, video_length=video_length, height=height, width=width, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale).videos
    output_path = save_videos_grid(video, save_path='output', path=f"{prompt}.gif")
    return output_path
    


demo_inputs = [
    gr.components.Dropdown(
        label="Model",
        choices=model_list.append("Tune-A-Video-library/a-man-is-surfing"),
        value="Tune-A-Video-library/a-man-is-surfing",
    ),
    gr.inputs.Textbox(
        label="Prompt",
        default='a flower blooming'

    ),
    gr.inputs.Slider(
        label="Video Length",
        minimum=1,
        maximum=50,
        default=8,
        step=1,
    ),
    gr.inputs.Slider(
        label="Height",
        minimum=128,
        maximum=1280,
        default=416,
        step=32,

    ),  
    gr.inputs.Slider(
        label="Width",
        minimum=128,
        maximum=1280,
        default=416,
        step=32,
    ),
    gr.inputs.Slider(
        label="Num Inference Steps",
        minimum=1,
        maximum=100,
        default=50,
        step=1,
    ),
    gr.inputs.Slider(
        label="Guidance Scale",
        minimum=0.0,
        maximum=100,
        default=7.5,
        step=0.5,
    )
]

demo_outputs = gr.outputs.Video(type="gif", label="Output")

examples = [
    ["Tune-A-Video-library/a-man-is-surfing", "a panda is surfing", 5, 416, 416, 50, 7.5],
    ["Tune-A-Video-library/a-man-is-surfing", "a flower blooming", 5, 416, 416, 50, 7.5],
    ["sd-dreambooth-library/mr-potato-head", "sks mr potato head, wearing a pink hat, is surfing.", 5, 416, 416, 50, 7.5],
    ["sd-dreambooth-library/mr-potato-head", "sks mr potato head is surfing in the forest.", 5, 416, 416, 50, 7.5],
]
    
description = "This is an application that generates video based on a text prompt. To get started, simply input text. The default model in the dropdown is a generic model that you can generate anything. Alternatively, for more photorealistic generations, you can use other models in the dropdown. These models are Dreambooth models, and they're trained with a specific object name, so make sure you know what the object is called. You can find an example prompt for a dreambooth model in Examples section right below the interface."
title = "Tune-A-Video: One-Shot Tuning of Image Diffusion Models for Text-to-Video Generation"

demo_app = gr.Interface(
    fn=tune_video_predict,
    inputs=demo_inputs,
    outputs=demo_outputs,
    examples=examples,
    cache_examples=False,
    title=title,
    theme="huggingface",
    description=description
)

demo_app.launch(debug=True, enable_queue=True)