Spaces:
Runtime error
Runtime error
File size: 1,712 Bytes
27758e8 826c17e 27758e8 907d6fd 26c5af6 907d6fd 2f6cd1f 734bc31 3104922 97ef017 f4f30ca 97ef017 734bc31 97bd2a2 3104922 826c17e 3104922 826c17e 97ef017 3104922 826c17e 4c9b055 d89dbed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 |
from huggingface_hub import from_pretrained_keras
import matplotlib.pyplot as plt
from math import sqrt, ceil
import tensorflow as tf
import gradio as gr
import numpy as np
model1 = tf.keras.models.load_model("mnist.h5", compile=False)
model2 = from_pretrained_keras("keras-io/WGAN-GP")
title = "WGAN-GP"
description = "Image Generation(Fashion Mnist and Handwritten Digits) Using WGAN"
article = """
<p style='text-align: center'>
<a href='https://keras.io/examples/generative/wgan_gp/' target='_blank'>Keras Example given by A_K_Nain</a>
<br>
Space by Gitesh Chawda
</p>
"""
def Predict(model, num_images):
random_latent_vectors = tf.random.normal(shape=(int(num_images), 128))
predictions = model(random_latent_vectors)
num = ceil(sqrt(num_images))
images = np.zeros((28*num, 28*num), dtype=float)
n = 0
for i in range(num):
for j in range(num):
if n == num_images:
break
images[i* 28 : (i+1)*28, j*28 : (j+1)*28] = predictions[n, :, :, 0]
n += 1
return images
def inference(num_images, Choose: str):
if Choose == 'Fashion_mnist':
result = Predict(model2, num_images)
else:
result = Predict(model1, num_images)
return result
inputs = [gr.inputs.Number(label="number of images"), gr.inputs.Radio(['Fashion_mnist', 'Handwritten_digits_mnist'])]
outputs = gr.outputs.Image(label="Output Image")
examples = [[4,"Handwritten_digits_mnist"], [6,"Handwritten_digits_mnist"],[10,"Fashion_mnist"]]
gr.Interface(inference, inputs, outputs, title=title, description=description, article=article, examples=examples).launch() |