WGAN-GP / app.py
IMvision12's picture
Create app.py
907d6fd
raw
history blame
1.21 kB
def create_digit_samples(num_images):
random_latent_vectors = tf.random.normal(shape=(int(num_images), 128))
predictions = model.predict(random_latent_vectors)
num = ceil(sqrt(num_images))
digit_images = np.zeros((28*num, 28*num), dtype=float)
n = 0
for i in range(num):
for j in range(num):
if n == num_images:
break
digit_images[i* 28 : (i+1)*28, j*28 : (j+1)*28] = predictions[n, :, :, 0]
n += 1
return digit_images
title = "WGAN-GP"
description = "Image Generation Using WGAN"
article = """
<p style='text-align: center'>
<a href='https://keras.io/examples/generative/wgan_gp/' target='_blank'>Keras Example given by A_K_Nain</a>
<br>
Space by Gitesh Chawda
</p>
"""
inputs = gr.inputs.Number(label="number of images")
outputs = gr.outputs.Image(label="Predictions")
examples = [
[4],
[7],
[8],
[2],
[10]
]
gr.Interface(create_digit_samples, inputs, outputs, title=title, examples=examples, description=description, article=article, analytics_enabled=False).launch(debug=True)