|
|
|
|
|
|
|
|
|
import os |
|
|
|
import torch.nn as nn |
|
|
|
from yolox.exp import Exp as MyExp |
|
|
|
|
|
class Exp(MyExp): |
|
def __init__(self): |
|
super(Exp, self).__init__() |
|
self.depth = 0.33 |
|
self.width = 0.25 |
|
self.input_size = (416, 416) |
|
self.random_size = (10, 20) |
|
self.mosaic_scale = (0.5, 1.5) |
|
self.test_size = (416, 416) |
|
self.mosaic_prob = 0.5 |
|
self.enable_mixup = False |
|
self.exp_name = os.path.split(os.path.realpath(__file__))[1].split(".")[0] |
|
|
|
def get_model(self, sublinear=False): |
|
|
|
def init_yolo(M): |
|
for m in M.modules(): |
|
if isinstance(m, nn.BatchNorm2d): |
|
m.eps = 1e-3 |
|
m.momentum = 0.03 |
|
if "model" not in self.__dict__: |
|
from yolox.models import YOLOX, YOLOPAFPN, YOLOXHead |
|
in_channels = [256, 512, 1024] |
|
|
|
backbone = YOLOPAFPN( |
|
self.depth, self.width, in_channels=in_channels, |
|
act=self.act, depthwise=True, |
|
) |
|
head = YOLOXHead( |
|
self.num_classes, self.width, in_channels=in_channels, |
|
act=self.act, depthwise=True |
|
) |
|
self.model = YOLOX(backbone, head) |
|
|
|
self.model.apply(init_yolo) |
|
self.model.head.initialize_biases(1e-2) |
|
return self.model |
|
|