Spaces:
Running
on
Zero
Running
on
Zero
import copy | |
import random | |
from PIL import Image | |
import numpy as np | |
def create_relative(RT_list, K_1=4.7, dataset="syn"): | |
if dataset == "realestate": | |
scale_T = 1 | |
RT_list = [RT.reshape(3, 4) for RT in RT_list] | |
elif dataset == "syn": | |
scale_T = (470 / K_1) / 7.5 | |
""" | |
4.694746736956946052e+02 0.000000000000000000e+00 4.800000000000000000e+02 | |
0.000000000000000000e+00 4.694746736956946052e+02 2.700000000000000000e+02 | |
0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 | |
""" | |
elif dataset == "zero123": | |
scale_T = 0.5 | |
else: | |
raise Exception("invalid dataset type") | |
# convert x y z to x -y -z | |
if dataset == "zero123": | |
flip_matrix = np.array([[1, 0, 0], [0, -1, 0], [0, 0, -1]]) | |
for i in range(len(RT_list)): | |
RT_list[i] = np.dot(flip_matrix, RT_list[i]) | |
temp = [] | |
first_frame_RT = copy.deepcopy(RT_list[0]) | |
# first_frame_R_inv = np.linalg.inv(first_frame_RT[:,:3]) | |
first_frame_R_inv = first_frame_RT[:, :3].T | |
first_frame_T = first_frame_RT[:, -1] | |
for RT in RT_list: | |
RT[:, :3] = np.dot(RT[:, :3], first_frame_R_inv) | |
RT[:, -1] = RT[:, -1] - np.dot(RT[:, :3], first_frame_T) | |
RT[:, -1] = RT[:, -1] * scale_T | |
temp.append(RT) | |
RT_list = temp | |
if dataset == "realestate": | |
RT_list = [RT.reshape(-1) for RT in RT_list] | |
return RT_list | |
def sigma_matrix2(sig_x, sig_y, theta): | |
"""Calculate the rotated sigma matrix (two dimensional matrix). | |
Args: | |
sig_x (float): | |
sig_y (float): | |
theta (float): Radian measurement. | |
Returns: | |
ndarray: Rotated sigma matrix. | |
""" | |
d_matrix = np.array([[sig_x**2, 0], [0, sig_y**2]]) | |
u_matrix = np.array( | |
[[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)]] | |
) | |
return np.dot(u_matrix, np.dot(d_matrix, u_matrix.T)) | |
def mesh_grid(kernel_size): | |
"""Generate the mesh grid, centering at zero. | |
Args: | |
kernel_size (int): | |
Returns: | |
xy (ndarray): with the shape (kernel_size, kernel_size, 2) | |
xx (ndarray): with the shape (kernel_size, kernel_size) | |
yy (ndarray): with the shape (kernel_size, kernel_size) | |
""" | |
ax = np.arange(-kernel_size // 2 + 1.0, kernel_size // 2 + 1.0) | |
xx, yy = np.meshgrid(ax, ax) | |
xy = np.hstack( | |
( | |
xx.reshape((kernel_size * kernel_size, 1)), | |
yy.reshape(kernel_size * kernel_size, 1), | |
) | |
).reshape(kernel_size, kernel_size, 2) | |
return xy, xx, yy | |
def pdf2(sigma_matrix, grid): | |
"""Calculate PDF of the bivariate Gaussian distribution. | |
Args: | |
sigma_matrix (ndarray): with the shape (2, 2) | |
grid (ndarray): generated by :func:`mesh_grid`, | |
with the shape (K, K, 2), K is the kernel size. | |
Returns: | |
kernel (ndarrray): un-normalized kernel. | |
""" | |
inverse_sigma = np.linalg.inv(sigma_matrix) | |
kernel = np.exp(-0.5 * np.sum(np.dot(grid, inverse_sigma) * grid, 2)) | |
return kernel | |
def bivariate_Gaussian(kernel_size, sig_x, sig_y, theta, grid=None, isotropic=True): | |
"""Generate a bivariate isotropic or anisotropic Gaussian kernel. | |
In the isotropic mode, only `sig_x` is used. `sig_y` and `theta` is ignored. | |
Args: | |
kernel_size (int): | |
sig_x (float): | |
sig_y (float): | |
theta (float): Radian measurement. | |
grid (ndarray, optional): generated by :func:`mesh_grid`, | |
with the shape (K, K, 2), K is the kernel size. Default: None | |
isotropic (bool): | |
Returns: | |
kernel (ndarray): normalized kernel. | |
""" | |
if grid is None: | |
grid, _, _ = mesh_grid(kernel_size) | |
if isotropic: | |
sigma_matrix = np.array([[sig_x**2, 0], [0, sig_x**2]]) | |
else: | |
sigma_matrix = sigma_matrix2(sig_x, sig_y, theta) | |
kernel = pdf2(sigma_matrix, grid) | |
kernel = kernel / np.sum(kernel) | |
return kernel | |
def rgba_to_rgb_with_bg(rgba_image, bg_color=(255, 255, 255)): | |
""" | |
Convert a PIL RGBA Image to an RGB Image with a white background. | |
Args: | |
rgba_image (Image): A PIL Image object in RGBA mode. | |
Returns: | |
Image: A PIL Image object in RGB mode with white background. | |
""" | |
# Ensure the image is in RGBA mode | |
# Ensure the image is in RGBA mode | |
if rgba_image.mode != "RGBA": | |
return rgba_image | |
# raise ValueError("The image must be in RGBA mode") | |
# Create a white background image | |
white_bg_rgb = Image.new("RGB", rgba_image.size, bg_color) | |
# Paste the RGBA image onto the white background using alpha channel as mask | |
white_bg_rgb.paste( | |
rgba_image, mask=rgba_image.split()[3] | |
) # 3 is the alpha channel index | |
return white_bg_rgb | |
def random_order_preserving_selection(items, num): | |
if num > len(items): | |
print("WARNING: Item list is shorter than `num` given.") | |
return items | |
selected_indices = sorted(random.sample(range(len(items)), num)) | |
selected_items = [items[i] for i in selected_indices] | |
return selected_items | |
def pad_pil_image_to_square(image, fill_color=(255, 255, 255)): | |
""" | |
Pad an image to make it square with the given fill color. | |
Args: | |
image (PIL.Image): The original image. | |
fill_color (tuple): The color to use for padding (default is black). | |
Returns: | |
PIL.Image: A new image that is padded to be square. | |
""" | |
width, height = image.size | |
# Determine the new size, which will be the maximum of width or height | |
new_size = max(width, height) | |
# Create a new image with the new size and fill color | |
new_image = Image.new("RGB", (new_size, new_size), fill_color) | |
# Calculate the position to paste the original image onto the new image | |
# This calculation centers the original image in the new square canvas | |
left = (new_size - width) // 2 | |
top = (new_size - height) // 2 | |
# Paste the original image into the new image | |
new_image.paste(image, (left, top)) | |
return new_image | |