|
import numpy as np |
|
from human_pose_estimator.modules.pose import Pose |
|
|
|
|
|
def rect(estimator, img: np.ndarray, height_size=512): |
|
num_keypoints = Pose.num_kpts |
|
_, pose_entries, all_keypoints = estimator.get_poses(img, height_size) |
|
|
|
rects = [] |
|
for n in range(len(pose_entries)): |
|
if len(pose_entries[n]) == 0: |
|
continue |
|
pose_keypoints = np.ones((num_keypoints, 2), dtype=np.int32) * -1 |
|
|
|
valid_keypoints = [] |
|
for kpt_id in range(num_keypoints): |
|
if pose_entries[n][kpt_id] != -1.0: |
|
pose_keypoints[kpt_id, 0] = int(all_keypoints[int(pose_entries[n][kpt_id]), 0]) |
|
pose_keypoints[kpt_id, 1] = int(all_keypoints[int(pose_entries[n][kpt_id]), 1]) |
|
valid_keypoints.append([pose_keypoints[kpt_id, 0], pose_keypoints[kpt_id, 1]]) |
|
valid_keypoints = np.array(valid_keypoints) |
|
|
|
if pose_entries[n][10] != -1.0 or pose_entries[n][13] != -1.0: |
|
pmin = valid_keypoints.min(0) |
|
pmax = valid_keypoints.max(0) |
|
|
|
center = (0.5 * (pmax[:2] + pmin[:2])).astype(np.int32) |
|
radius = int(0.65 * max(pmax[0] - pmin[0], pmax[1] - pmin[1])) |
|
elif pose_entries[n][10] == -1.0 and pose_entries[n][13] == -1.0 and pose_entries[n][8] != -1.0 and \ |
|
pose_entries[n][11] != -1.0: |
|
|
|
center = (0.5 * (pose_keypoints[8] + pose_keypoints[11])).astype(np.int32) |
|
radius = int(1.45 * np.sqrt(((center[None, :] - valid_keypoints) ** 2).sum(1)).max(0)) |
|
center[1] += int(0.05 * radius) |
|
else: |
|
center = np.array([img.shape[1] // 2, img.shape[0] // 2]) |
|
radius = max(img.shape[1] // 2, img.shape[0] // 2) |
|
|
|
x1 = center[0] - radius |
|
y1 = center[1] - radius |
|
|
|
rects.append([x1, y1, 2 * radius, 2 * radius]) |
|
|
|
return img, rects |
|
|
|
|
|
|
|
|