ragtest-sakimilo / qna_prompting.py
lingyit1108's picture
refined
5ea4259
raw
history blame
8.78 kB
import sqlite3
import streamlit as st
from pydantic import BaseModel, Field
from llama_index.core.tools import FunctionTool
import time
db_path = "./database/mock_qna.sqlite"
qna_question_description = """
Only trigger this when user wants to be tested with a question.
Use this tool to extract the chapter number from the body of input text,
thereafter, chapter number will be used as a filtering criteria for
extracting the right questions set from database.
Thereafter, the chapter_n argument will be passed to the function for Q&A question retrieval.
If no chapter number specified or user requested for random question,
or user has no preference over which chapter of textbook to be tested,
set function argument `chapter_n` to be `Chapter_0`.
"""
qna_question_data_format = """
The format of the function argument `chapter_n` looks as follow:
It should be in the format with `Chapter_` as prefix.
Example 1: `Chapter_1` for first chapter
Example 2: For chapter 12 of the textbook, you should return `Chapter_12`
Example 3: `Chapter_5` for fifth chapter
"""
qna_answer_description = """
Not to trigger this when questions being asked, come directly from user.
Only use this tool to trigger the evaluation of user's provided input with the
correct answer of the Q&A question asked by Assistant. When user provides
answer to the question asked, they can reply in natural language or giving
the alphabet letter of which selected choice they think it's the right answer.
If user's answer is not a single alphabet letter, but is contextually
closer to a particular answer choice, return the corresponding
alphabet A, B, C, D or Z for which the answer's meaning is closest to.
Thereafter, the `user_selected_answer` argument will be passed to the
function for Q&A question evaluation.
"""
qna_answer_data_format = """
The format of the function argument `user_selected_answer` looks as follow:
It should be in the format of single character such as `A`, `B`, `C`, `D` or `Z`.
Example 1: User's answer is `a`, it means choice `A`.
Example 2: User's answer is contextually closer to 3rd answer choice, it means `C`.
Example 3: User says last is the answer, it means `D`.
Example 4: If user doesn't know about the answer, it means `Z`.
"""
class Question_Model(BaseModel):
chapter_n: str = Field(...,
pattern=r'^Chapter_\d*$',
description=qna_question_data_format
)
class Answer_Model(BaseModel):
user_selected_answer: str = Field(...,
pattern=r'^[ABCDZ]$',
description=qna_answer_data_format
)
def get_qna_question(chapter_n: str) -> str:
con = sqlite3.connect(db_path)
cur = con.cursor()
filter_clause = "WHERE a.question_id IS NULL" \
if chapter_n == "Chapter_0" \
else f"WHERE a.question_id IS NULL AND chapter='{chapter_n}'"
sql_string = f"""SELECT q.id, question, option_1, option_2, option_3, option_4, q.correct_answer, q.reasoning
FROM qna_tbl q LEFT JOIN
(SELECT *
FROM answer_tbl
WHERE user_id = '{st.session_state.user_id}') a
ON q.id = a.question_id
""" + filter_clause
# sql_string = sql_string + " ORDER BY RANDOM() LIMIT 1"
res = cur.execute(sql_string)
result = res.fetchone()
id = result[0]
question = result[1]
option_1 = result[2]
option_2 = result[3]
option_3 = result[4]
option_4 = result[5]
c_answer = result[6]
reasons = result[7]
c_answer = int(c_answer)
option_dict = {
1: option_1,
2: option_2,
3: option_3,
4: option_4
}
qna_answer_str = option_dict.get(c_answer, "NA")
qna_str = "As requested, here is the retrieved question: \n" + \
"============================================= \n" + \
question.replace("\\n", "\n") + "\n" + \
"A) " + option_1 + "\n" + \
"B) " + option_2 + "\n" + \
"C) " + option_3 + "\n" + \
"D) " + option_4 + "\n"
system_prompt = (
"#### System prompt to assistant #### \n"
"Be reminded to ask user the question \n"
"#################################### \n"
)
st.session_state.question_id = id
st.session_state.qna_answer_int = c_answer
st.session_state.reasons = reasons
st.session_state.qna_answer_str = qna_answer_str
con.close()
return qna_str + system_prompt
def evaluate_qna_answer(user_selected_answer: str) -> str:
try:
answer_mapping = {
"A": 1,
"B": 2,
"C": 3,
"D": 4,
"Z": 0
}
num_mapping = dict((v,k) for k,v in answer_mapping.items())
user_answer_numeric = answer_mapping.get(user_selected_answer, 0)
question_id = st.session_state.question_id
qna_answer_int = st.session_state.qna_answer_int
reasons = st.session_state.reasons
qna_answer_str = st.session_state.qna_answer_str
### convert to numeric type
qna_answer_int = int(qna_answer_int)
qna_answer_alphabet = num_mapping.get(qna_answer_int, "ERROR")
con = sqlite3.connect(db_path)
cur = con.cursor()
sql_string = f"""INSERT INTO answer_tbl
VALUES ('{st.session_state.user_id}',
{question_id},
{qna_answer_int},
{user_answer_numeric})
"""
res = cur.execute(sql_string)
con.commit()
con.close()
reasoning = "" if "textbook" in reasons else f"Rationale is that: {reasons}. "
qna_answer_response = (
f"Your selected answer is `{user_selected_answer}`, "
f"but the actual answer is `{qna_answer_alphabet}`) {qna_answer_str}. "
)
qna_not_knowing_response = (
f"No problem! The answer is `{qna_answer_alphabet}`. "
f"Let me explain to you why the correct answer is '{qna_answer_str}'. "
)
to_know_more = (
"######## System prompt to assistant ######### \n"
"Be reminded to provide explanation to user \n"
"############################################# \n"
)
if user_answer_numeric == 0:
st.toast("πŸ―β“ couldn't find the honey? πŸ‘Œ no worries!", icon="🫠")
time.sleep(2)
st.toast("🐻 Let me bring it to you! πŸ―πŸ’•", icon="πŸ’Œ")
time.sleep(2)
st.toast("✨ You will do great next time! πŸ’†", icon="🎁")
final_response = qna_not_knowing_response + reasoning + to_know_more
elif qna_answer_int == user_answer_numeric:
st.toast("🍯 yummy yummy, hooray!", icon="πŸŽ‰")
time.sleep(2)
st.toast("πŸ»πŸ’•πŸ― You got it right!", icon="🎊")
time.sleep(2)
st.toast("πŸ₯‡ You are amazing! πŸ’―πŸ’―", icon="πŸ’ͺ")
st.balloons()
final_response = qna_answer_response + reasoning + to_know_more
else:
st.toast("🐼 Something doesn't feel right.. πŸ”₯🏠πŸ”₯", icon="πŸ˜‚")
time.sleep(2)
st.toast("πŸ₯Ά Are you sure..? 😬😬", icon="😭")
time.sleep(2)
st.toast("πŸ€œπŸ€› Nevertheless, it was a good try!! πŸ‹οΈβ€β™‚οΈπŸ‹οΈβ€β™‚οΈ", icon="πŸ‘")
st.snow()
final_response = qna_answer_response + reasoning + to_know_more
st.session_state.question_id = None
st.session_state.qna_answer_int = None
st.session_state.reasons = None
st.session_state.qna_answer_str = None
except Exception as e:
print(e)
return final_response
get_qna_question_tool = FunctionTool.from_defaults(
fn=get_qna_question,
name="Extract_Question",
description=qna_question_description,
fn_schema=Question_Model
)
evaluate_qna_answer_tool = FunctionTool.from_defaults(
fn=evaluate_qna_answer,
name="Evaluate_Answer",
description=qna_answer_description,
fn_schema=Answer_Model
)