oguzakif's picture
change test.py
834b83c
# --------------------------------------------------------
# SiamMask
# Licensed under The MIT License
# Written by Qiang Wang (wangqiang2015 at ia.ac.cn)
# --------------------------------------------------------
from __future__ import division
import argparse
import logging
import numpy as np
import cv2
from PIL import Image
import os
from os import makedirs
from os.path import join, isdir, isfile
import sys
sys.path.append(os.path.abspath(os.path.join(__file__, "..", "..")))
sys.path.append(os.path.abspath(os.path.join(__file__, "..","..","utils")))
from SiamMask.utils.log_helper import init_log, add_file_handler
from SiamMask.utils.load_helper import load_pretrain
from SiamMask.utils.bbox_helper import get_axis_aligned_bbox, cxy_wh_2_rect
from SiamMask.utils.benchmark_helper import load_dataset, dataset_zoo
import torch
from torch.autograd import Variable
import torch.nn.functional as F
from SiamMask.utils.anchors import Anchors
from SiamMask.utils.tracker_config import TrackerConfig
from SiamMask.utils.config_helper import load_config
from SiamMask.utils.pyvotkit.region import vot_overlap, vot_float2str
thrs = np.arange(0.3, 0.5, 0.05)
parser = argparse.ArgumentParser(description='Test SiamMask')
parser.add_argument('--arch', dest='arch', default='', choices=['Custom',],
help='architecture of pretrained model')
parser.add_argument('--config', dest='config', required=True, help='hyper-parameter for SiamMask')
parser.add_argument('--resume', default='', type=str, required=True,
metavar='PATH', help='path to latest checkpoint (default: none)')
parser.add_argument('--mask', action='store_true', help='whether use mask output')
parser.add_argument('--refine', action='store_true', help='whether use mask refine output')
parser.add_argument('--dataset', dest='dataset', default='VOT2018', choices=dataset_zoo,
help='datasets')
parser.add_argument('-l', '--log', default="log_test.txt", type=str, help='log file')
parser.add_argument('-v', '--visualization', dest='visualization', action='store_true',
help='whether visualize result')
parser.add_argument('--save_mask', action='store_true', help='whether use save mask for davis')
parser.add_argument('--gt', action='store_true', help='whether use gt rect for davis (Oracle)')
parser.add_argument('--video', default='', type=str, help='test special video')
parser.add_argument('--cpu', action='store_true', help='cpu mode')
parser.add_argument('--debug', action='store_true', help='debug mode')
def to_torch(ndarray):
if type(ndarray).__module__ == 'numpy':
return torch.from_numpy(ndarray)
elif not torch.is_tensor(ndarray):
raise ValueError("Cannot convert {} to torch tensor"
.format(type(ndarray)))
return ndarray
def im_to_torch(img):
img = np.transpose(img, (2, 0, 1)) # C*H*W
img = to_torch(img).float()
return img
def get_subwindow_tracking(im, pos, model_sz, original_sz, avg_chans, out_mode='torch'):
if isinstance(pos, float):
pos = [pos, pos]
sz = original_sz
im_sz = im.shape
c = (original_sz + 1) / 2
context_xmin = round(pos[0] - c)
context_xmax = context_xmin + sz - 1
context_ymin = round(pos[1] - c)
context_ymax = context_ymin + sz - 1
left_pad = int(max(0., -context_xmin))
top_pad = int(max(0., -context_ymin))
right_pad = int(max(0., context_xmax - im_sz[1] + 1))
bottom_pad = int(max(0., context_ymax - im_sz[0] + 1))
context_xmin = context_xmin + left_pad
context_xmax = context_xmax + left_pad
context_ymin = context_ymin + top_pad
context_ymax = context_ymax + top_pad
# zzp: a more easy speed version
r, c, k = im.shape
if any([top_pad, bottom_pad, left_pad, right_pad]):
te_im = np.zeros((r + top_pad + bottom_pad, c + left_pad + right_pad, k), np.uint8)
te_im[top_pad:top_pad + r, left_pad:left_pad + c, :] = im
if top_pad:
te_im[0:top_pad, left_pad:left_pad + c, :] = avg_chans
if bottom_pad:
te_im[r + top_pad:, left_pad:left_pad + c, :] = avg_chans
if left_pad:
te_im[:, 0:left_pad, :] = avg_chans
if right_pad:
te_im[:, c + left_pad:, :] = avg_chans
im_patch_original = te_im[int(context_ymin):int(context_ymax + 1), int(context_xmin):int(context_xmax + 1), :]
else:
im_patch_original = im[int(context_ymin):int(context_ymax + 1), int(context_xmin):int(context_xmax + 1), :]
if not np.array_equal(model_sz, original_sz):
im_patch = cv2.resize(im_patch_original, (model_sz, model_sz))
else:
im_patch = im_patch_original
# cv2.imshow('crop', im_patch)
# cv2.waitKey(0)
return im_to_torch(im_patch) if out_mode in 'torch' else im_patch
def generate_anchor(cfg, score_size):
anchors = Anchors(cfg)
anchor = anchors.anchors
x1, y1, x2, y2 = anchor[:, 0], anchor[:, 1], anchor[:, 2], anchor[:, 3]
anchor = np.stack([(x1+x2)*0.5, (y1+y2)*0.5, x2-x1, y2-y1], 1)
total_stride = anchors.stride
anchor_num = anchor.shape[0]
anchor = np.tile(anchor, score_size * score_size).reshape((-1, 4))
ori = - (score_size // 2) * total_stride
xx, yy = np.meshgrid([ori + total_stride * dx for dx in range(score_size)],
[ori + total_stride * dy for dy in range(score_size)])
xx, yy = np.tile(xx.flatten(), (anchor_num, 1)).flatten(), \
np.tile(yy.flatten(), (anchor_num, 1)).flatten()
anchor[:, 0], anchor[:, 1] = xx.astype(np.float32), yy.astype(np.float32)
return anchor
def siamese_init(im, target_pos, target_sz, model, hp=None, device='cpu'):
state = dict()
state['im_h'] = im.shape[0]
state['im_w'] = im.shape[1]
p = TrackerConfig()
p.update(hp, model.anchors)
p.renew()
net = model
p.scales = model.anchors['scales']
p.ratios = model.anchors['ratios']
p.anchor_num = model.anchor_num
p.anchor = generate_anchor(model.anchors, p.score_size)
avg_chans = np.mean(im, axis=(0, 1))
wc_z = target_sz[0] + p.context_amount * sum(target_sz)
hc_z = target_sz[1] + p.context_amount * sum(target_sz)
s_z = round(np.sqrt(wc_z * hc_z))
# initialize the exemplar
z_crop = get_subwindow_tracking(im, target_pos, p.exemplar_size, s_z, avg_chans)
z = Variable(z_crop.unsqueeze(0))
net.template(z.to(device))
if p.windowing == 'cosine':
window = np.outer(np.hanning(p.score_size), np.hanning(p.score_size))
elif p.windowing == 'uniform':
window = np.ones((p.score_size, p.score_size))
window = np.tile(window.flatten(), p.anchor_num)
state['p'] = p
state['net'] = net
state['avg_chans'] = avg_chans
state['window'] = window
state['target_pos'] = target_pos
state['target_sz'] = target_sz
return state
def siamese_track(state, im, mask_enable=False, refine_enable=False, device='cpu', debug=False):
p = state['p']
net = state['net']
avg_chans = state['avg_chans']
window = state['window']
target_pos = state['target_pos']
target_sz = state['target_sz']
wc_x = target_sz[1] + p.context_amount * sum(target_sz)
hc_x = target_sz[0] + p.context_amount * sum(target_sz)
s_x = np.sqrt(wc_x * hc_x)
scale_x = p.exemplar_size / s_x
d_search = (p.instance_size - p.exemplar_size) / 2
pad = d_search / scale_x
s_x = s_x + 2 * pad
crop_box = [target_pos[0] - round(s_x) / 2, target_pos[1] - round(s_x) / 2, round(s_x), round(s_x)]
if debug:
im_debug = im.copy()
crop_box_int = np.int0(crop_box)
cv2.rectangle(im_debug, (crop_box_int[0], crop_box_int[1]),
(crop_box_int[0] + crop_box_int[2], crop_box_int[1] + crop_box_int[3]), (255, 0, 0), 2)
cv2.imshow('search area', im_debug)
cv2.waitKey(0)
# extract scaled crops for search region x at previous target position
x_crop = Variable(get_subwindow_tracking(im, target_pos, p.instance_size, round(s_x), avg_chans).unsqueeze(0))
if mask_enable:
score, delta, mask = net.track_mask(x_crop.to(device))
else:
score, delta = net.track(x_crop.to(device))
delta = delta.permute(1, 2, 3, 0).contiguous().view(4, -1).data.cpu().numpy()
score = F.softmax(score.permute(1, 2, 3, 0).contiguous().view(2, -1).permute(1, 0), dim=1).data[:,
1].cpu().numpy()
delta[0, :] = delta[0, :] * p.anchor[:, 2] + p.anchor[:, 0]
delta[1, :] = delta[1, :] * p.anchor[:, 3] + p.anchor[:, 1]
delta[2, :] = np.exp(delta[2, :]) * p.anchor[:, 2]
delta[3, :] = np.exp(delta[3, :]) * p.anchor[:, 3]
def change(r):
return np.maximum(r, 1. / r)
def sz(w, h):
pad = (w + h) * 0.5
sz2 = (w + pad) * (h + pad)
return np.sqrt(sz2)
def sz_wh(wh):
pad = (wh[0] + wh[1]) * 0.5
sz2 = (wh[0] + pad) * (wh[1] + pad)
return np.sqrt(sz2)
# size penalty
target_sz_in_crop = target_sz*scale_x
s_c = change(sz(delta[2, :], delta[3, :]) / (sz_wh(target_sz_in_crop))) # scale penalty
r_c = change((target_sz_in_crop[0] / target_sz_in_crop[1]) / (delta[2, :] / delta[3, :])) # ratio penalty
penalty = np.exp(-(r_c * s_c - 1) * p.penalty_k)
pscore = penalty * score
# cos window (motion model)
pscore = pscore * (1 - p.window_influence) + window * p.window_influence
best_pscore_id = np.argmax(pscore)
pred_in_crop = delta[:, best_pscore_id] / scale_x
lr = penalty[best_pscore_id] * score[best_pscore_id] * p.lr # lr for OTB
res_x = pred_in_crop[0] + target_pos[0]
res_y = pred_in_crop[1] + target_pos[1]
res_w = target_sz[0] * (1 - lr) + pred_in_crop[2] * lr
res_h = target_sz[1] * (1 - lr) + pred_in_crop[3] * lr
target_pos = np.array([res_x, res_y])
target_sz = np.array([res_w, res_h])
# for Mask Branch
if mask_enable:
best_pscore_id_mask = np.unravel_index(best_pscore_id, (5, p.score_size, p.score_size))
delta_x, delta_y = best_pscore_id_mask[2], best_pscore_id_mask[1]
if refine_enable:
mask = net.track_refine((delta_y, delta_x)).to(device).sigmoid().squeeze().view(
p.out_size, p.out_size).cpu().data.numpy()
else:
mask = mask[0, :, delta_y, delta_x].sigmoid(). \
squeeze().view(p.out_size, p.out_size).cpu().data.numpy()
def crop_back(image, bbox, out_sz, padding=-1):
a = (out_sz[0] - 1) / bbox[2]
b = (out_sz[1] - 1) / bbox[3]
c = -a * bbox[0]
d = -b * bbox[1]
mapping = np.array([[a, 0, c],
[0, b, d]]).astype(np.float)
crop = cv2.warpAffine(image, mapping, (out_sz[0], out_sz[1]),
flags=cv2.INTER_LINEAR,
borderMode=cv2.BORDER_CONSTANT,
borderValue=padding)
return crop
s = crop_box[2] / p.instance_size
sub_box = [crop_box[0] + (delta_x - p.base_size / 2) * p.total_stride * s,
crop_box[1] + (delta_y - p.base_size / 2) * p.total_stride * s,
s * p.exemplar_size, s * p.exemplar_size]
s = p.out_size / sub_box[2]
back_box = [-sub_box[0] * s, -sub_box[1] * s, state['im_w'] * s, state['im_h'] * s]
mask_in_img = crop_back(mask, back_box, (state['im_w'], state['im_h']))
target_mask = (mask_in_img > p.seg_thr).astype(np.uint8)
if cv2.__version__[-5] == '4':
contours, _ = cv2.findContours(target_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
else:
_, contours, _ = cv2.findContours(target_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
cnt_area = [cv2.contourArea(cnt) for cnt in contours]
if len(contours) != 0 and np.max(cnt_area) > 100:
contour = contours[np.argmax(cnt_area)] # use max area polygon
polygon = contour.reshape(-1, 2)
# pbox = cv2.boundingRect(polygon) # Min Max Rectangle
prbox = cv2.boxPoints(cv2.minAreaRect(polygon)) # Rotated Rectangle
# box_in_img = pbox
rbox_in_img = prbox
else: # empty mask
location = cxy_wh_2_rect(target_pos, target_sz)
rbox_in_img = np.array([[location[0], location[1]],
[location[0] + location[2], location[1]],
[location[0] + location[2], location[1] + location[3]],
[location[0], location[1] + location[3]]])
target_pos[0] = max(0, min(state['im_w'], target_pos[0]))
target_pos[1] = max(0, min(state['im_h'], target_pos[1]))
target_sz[0] = max(10, min(state['im_w'], target_sz[0]))
target_sz[1] = max(10, min(state['im_h'], target_sz[1]))
state['target_pos'] = target_pos
state['target_sz'] = target_sz
state['score'] = score[best_pscore_id]
state['mask'] = mask_in_img if mask_enable else []
state['ploygon'] = rbox_in_img if mask_enable else []
return state
def track_vot(model, video, hp=None, mask_enable=False, refine_enable=False, device='cpu'):
regions = [] # result and states[1 init / 2 lost / 0 skip]
image_files, gt = video['image_files'], video['gt']
start_frame, end_frame, lost_times, toc = 0, len(image_files), 0, 0
for f, image_file in enumerate(image_files):
im = cv2.imread(image_file)
tic = cv2.getTickCount()
if f == start_frame: # init
cx, cy, w, h = get_axis_aligned_bbox(gt[f])
target_pos = np.array([cx, cy])
target_sz = np.array([w, h])
state = siamese_init(im, target_pos, target_sz, model, hp, device) # init tracker
location = cxy_wh_2_rect(state['target_pos'], state['target_sz'])
regions.append(1 if 'VOT' in args.dataset else gt[f])
elif f > start_frame: # tracking
state = siamese_track(state, im, mask_enable, refine_enable, device, args.debug) # track
if mask_enable:
location = state['ploygon'].flatten()
mask = state['mask']
else:
location = cxy_wh_2_rect(state['target_pos'], state['target_sz'])
mask = []
if 'VOT' in args.dataset:
gt_polygon = ((gt[f][0], gt[f][1]), (gt[f][2], gt[f][3]),
(gt[f][4], gt[f][5]), (gt[f][6], gt[f][7]))
if mask_enable:
pred_polygon = ((location[0], location[1]), (location[2], location[3]),
(location[4], location[5]), (location[6], location[7]))
else:
pred_polygon = ((location[0], location[1]),
(location[0] + location[2], location[1]),
(location[0] + location[2], location[1] + location[3]),
(location[0], location[1] + location[3]))
b_overlap = vot_overlap(gt_polygon, pred_polygon, (im.shape[1], im.shape[0]))
else:
b_overlap = 1
if b_overlap:
regions.append(location)
else: # lost
regions.append(2)
lost_times += 1
start_frame = f + 5 # skip 5 frames
else: # skip
regions.append(0)
toc += cv2.getTickCount() - tic
if args.visualization and f >= start_frame: # visualization (skip lost frame)
im_show = im.copy()
if f == 0: cv2.destroyAllWindows()
if gt.shape[0] > f:
if len(gt[f]) == 8:
cv2.polylines(im_show, [np.array(gt[f], np.int).reshape((-1, 1, 2))], True, (0, 255, 0), 3)
else:
cv2.rectangle(im_show, (gt[f, 0], gt[f, 1]), (gt[f, 0] + gt[f, 2], gt[f, 1] + gt[f, 3]), (0, 255, 0), 3)
if len(location) == 8:
if mask_enable:
mask = mask > state['p'].seg_thr
im_show[:, :, 2] = mask * 255 + (1 - mask) * im_show[:, :, 2]
location_int = np.int0(location)
cv2.polylines(im_show, [location_int.reshape((-1, 1, 2))], True, (0, 255, 255), 3)
else:
location = [int(l) for l in location]
cv2.rectangle(im_show, (location[0], location[1]),
(location[0] + location[2], location[1] + location[3]), (0, 255, 255), 3)
cv2.putText(im_show, str(f), (40, 40), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 255), 2)
cv2.putText(im_show, str(lost_times), (40, 80), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)
cv2.putText(im_show, str(state['score']) if 'score' in state else '', (40, 120), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)
cv2.imshow(video['name'], im_show)
cv2.waitKey(1)
toc /= cv2.getTickFrequency()
# save result
name = args.arch.split('.')[0] + '_' + ('mask_' if mask_enable else '') + ('refine_' if refine_enable else '') +\
args.resume.split('/')[-1].split('.')[0]
if 'VOT' in args.dataset:
video_path = join('test', args.dataset, name,
'baseline', video['name'])
if not isdir(video_path): makedirs(video_path)
result_path = join(video_path, '{:s}_001.txt'.format(video['name']))
with open(result_path, "w") as fin:
for x in regions:
fin.write("{:d}\n".format(x)) if isinstance(x, int) else \
fin.write(','.join([vot_float2str("%.4f", i) for i in x]) + '\n')
else: # OTB
video_path = join('test', args.dataset, name)
if not isdir(video_path): makedirs(video_path)
result_path = join(video_path, '{:s}.txt'.format(video['name']))
with open(result_path, "w") as fin:
for x in regions:
fin.write(','.join([str(i) for i in x])+'\n')
logger.info('({:d}) Video: {:12s} Time: {:02.1f}s Speed: {:3.1f}fps Lost: {:d}'.format(
v_id, video['name'], toc, f / toc, lost_times))
return lost_times, f / toc
def MultiBatchIouMeter(thrs, outputs, targets, start=None, end=None):
targets = np.array(targets)
outputs = np.array(outputs)
num_frame = targets.shape[0]
if start is None:
object_ids = np.array(list(range(outputs.shape[0]))) + 1
else:
object_ids = [int(id) for id in start]
num_object = len(object_ids)
res = np.zeros((num_object, len(thrs)), dtype=np.float32)
output_max_id = np.argmax(outputs, axis=0).astype('uint8')+1
outputs_max = np.max(outputs, axis=0)
for k, thr in enumerate(thrs):
output_thr = outputs_max > thr
for j in range(num_object):
target_j = targets == object_ids[j]
if start is None:
start_frame, end_frame = 1, num_frame - 1
else:
start_frame, end_frame = start[str(object_ids[j])] + 1, end[str(object_ids[j])] - 1
iou = []
for i in range(start_frame, end_frame):
pred = (output_thr[i] * output_max_id[i]) == (j+1)
mask_sum = (pred == 1).astype(np.uint8) + (target_j[i] > 0).astype(np.uint8)
intxn = np.sum(mask_sum == 2)
union = np.sum(mask_sum > 0)
if union > 0:
iou.append(intxn / union)
elif union == 0 and intxn == 0:
iou.append(1)
res[j, k] = np.mean(iou)
return res
def track_vos(model, video, hp=None, mask_enable=False, refine_enable=False, mot_enable=False, device='cpu'):
image_files = video['image_files']
annos = [np.array(Image.open(x)) for x in video['anno_files']]
if 'anno_init_files' in video:
annos_init = [np.array(Image.open(x)) for x in video['anno_init_files']]
else:
annos_init = [annos[0]]
if not mot_enable:
annos = [(anno > 0).astype(np.uint8) for anno in annos]
annos_init = [(anno_init > 0).astype(np.uint8) for anno_init in annos_init]
if 'start_frame' in video:
object_ids = [int(id) for id in video['start_frame']]
else:
object_ids = [o_id for o_id in np.unique(annos[0]) if o_id != 0]
if len(object_ids) != len(annos_init):
annos_init = annos_init*len(object_ids)
object_num = len(object_ids)
toc = 0
pred_masks = np.zeros((object_num, len(image_files), annos[0].shape[0], annos[0].shape[1]))-1
for obj_id, o_id in enumerate(object_ids):
if 'start_frame' in video:
start_frame = video['start_frame'][str(o_id)]
end_frame = video['end_frame'][str(o_id)]
else:
start_frame, end_frame = 0, len(image_files)
for f, image_file in enumerate(image_files):
im = cv2.imread(image_file)
tic = cv2.getTickCount()
if f == start_frame: # init
mask = annos_init[obj_id] == o_id
x, y, w, h = cv2.boundingRect((mask).astype(np.uint8))
cx, cy = x + w/2, y + h/2
target_pos = np.array([cx, cy])
target_sz = np.array([w, h])
state = siamese_init(im, target_pos, target_sz, model, hp, device=device) # init tracker
elif end_frame >= f > start_frame: # tracking
state = siamese_track(state, im, mask_enable, refine_enable, device=device) # track
mask = state['mask']
toc += cv2.getTickCount() - tic
if end_frame >= f >= start_frame:
pred_masks[obj_id, f, :, :] = mask
toc /= cv2.getTickFrequency()
if len(annos) == len(image_files):
multi_mean_iou = MultiBatchIouMeter(thrs, pred_masks, annos,
start=video['start_frame'] if 'start_frame' in video else None,
end=video['end_frame'] if 'end_frame' in video else None)
for i in range(object_num):
for j, thr in enumerate(thrs):
logger.info('Fusion Multi Object{:20s} IOU at {:.2f}: {:.4f}'.format(video['name'] + '_' + str(i + 1), thr,
multi_mean_iou[i, j]))
else:
multi_mean_iou = []
if args.save_mask:
video_path = join('test', args.dataset, 'SiamMask', video['name'])
if not isdir(video_path): makedirs(video_path)
pred_mask_final = np.array(pred_masks)
pred_mask_final = (np.argmax(pred_mask_final, axis=0).astype('uint8') + 1) * (
np.max(pred_mask_final, axis=0) > state['p'].seg_thr).astype('uint8')
for i in range(pred_mask_final.shape[0]):
cv2.imwrite(join(video_path, image_files[i].split('/')[-1].split('.')[0] + '.png'), pred_mask_final[i].astype(np.uint8))
if args.visualization:
pred_mask_final = np.array(pred_masks)
pred_mask_final = (np.argmax(pred_mask_final, axis=0).astype('uint8') + 1) * (
np.max(pred_mask_final, axis=0) > state['p'].seg_thr).astype('uint8')
COLORS = np.random.randint(128, 255, size=(object_num, 3), dtype="uint8")
COLORS = np.vstack([[0, 0, 0], COLORS]).astype("uint8")
mask = COLORS[pred_mask_final]
for f, image_file in enumerate(image_files):
output = ((0.4 * cv2.imread(image_file)) + (0.6 * mask[f,:,:,:])).astype("uint8")
cv2.imshow("mask", output)
cv2.waitKey(1)
logger.info('({:d}) Video: {:12s} Time: {:02.1f}s Speed: {:3.1f}fps'.format(
v_id, video['name'], toc, f*len(object_ids) / toc))
return multi_mean_iou, f*len(object_ids) / toc
def main():
global args, logger, v_id
args = parser.parse_args()
cfg = load_config(args)
init_log('global', logging.INFO)
if args.log != "":
add_file_handler('global', args.log, logging.INFO)
logger = logging.getLogger('global')
logger.info(args)
# setup model
if args.arch == 'Custom':
from custom import Custom
model = Custom(anchors=cfg['anchors'])
else:
parser.error('invalid architecture: {}'.format(args.arch))
if args.resume:
assert isfile(args.resume), '{} is not a valid file'.format(args.resume)
model = load_pretrain(model, args.resume)
model.eval()
device = torch.device('cuda' if (torch.cuda.is_available() and not args.cpu) else 'cpu')
model = model.to(device)
# setup dataset
dataset = load_dataset(args.dataset)
# VOS or VOT?
if args.dataset in ['DAVIS2016', 'DAVIS2017', 'ytb_vos'] and args.mask:
vos_enable = True # enable Mask output
else:
vos_enable = False
total_lost = 0 # VOT
iou_lists = [] # VOS
speed_list = []
for v_id, video in enumerate(dataset.keys(), start=1):
if args.video != '' and video != args.video:
continue
if vos_enable:
iou_list, speed = track_vos(model, dataset[video], cfg['hp'] if 'hp' in cfg.keys() else None,
args.mask, args.refine, args.dataset in ['DAVIS2017', 'ytb_vos'], device=device)
iou_lists.append(iou_list)
else:
lost, speed = track_vot(model, dataset[video], cfg['hp'] if 'hp' in cfg.keys() else None,
args.mask, args.refine, device=device)
total_lost += lost
speed_list.append(speed)
# report final result
if vos_enable:
for thr, iou in zip(thrs, np.mean(np.concatenate(iou_lists), axis=0)):
logger.info('Segmentation Threshold {:.2f} mIoU: {:.3f}'.format(thr, iou))
else:
logger.info('Total Lost: {:d}'.format(total_lost))
logger.info('Mean Speed: {:.2f} FPS'.format(np.mean(speed_list)))
if __name__ == '__main__':
main()