Spaces:
Runtime error
Runtime error
import matplotlib.pyplot as plt | |
import streamlit as st | |
import pandas as pd | |
import numpy as np | |
import yfinance as yf | |
import plotly.express as px | |
import plotly.graph_objects as go | |
from sklearn.preprocessing import MinMaxScaler | |
from tensorflow.keras.models import Sequential | |
from tensorflow.keras.layers import Activation, Dense, Dropout, LSTM | |
from datetime import date, datetime, timedelta | |
from stocknews import StockNews | |
# --- SIDEBAR CODE | |
ticker = st.sidebar.selectbox('Select your Crypto', ["BTC-USD", "ETH-USD"]) | |
start_date = st.sidebar.date_input('Start Date', date.today() - timedelta(days=365)) | |
end_date = st.sidebar.date_input('End Date') | |
# --- MAIN PAGE | |
st.header('Cryptocurrency Prediction') | |
col1, col2, = st.columns([1,9]) | |
with col1: | |
st.image('icons/'+ ticker +'.png', width=75) | |
with col2: | |
st.write(f" ## { ticker}") | |
ticker_obj = yf.Ticker(ticker) | |
# --- CODE | |
model_data = ticker_obj.history(interval='1h', start=start_date, end=end_date) | |
# Extract the 'close' column for prediction | |
target_data = model_data["Close"].values.reshape(-1, 1) | |
# Normalize the target data | |
scaler = MinMaxScaler() | |
target_data_normalized = scaler.fit_transform(target_data) | |
# Normalize the input features | |
input_features = ['Open', 'High', 'Low', 'Volume'] | |
input_data = model_data[input_features].values | |
input_data_normalized = scaler.fit_transform(input_data) | |
def build_lstm_model(input_data, output_size, neurons, activ_func='linear', dropout=0.2, loss='mse', optimizer='adam'): | |
model = Sequential() | |
model.add(LSTM(neurons, input_shape=(input_data.shape[1], input_data.shape[2]))) | |
model.add(Dropout(dropout)) | |
model.add(Dense(units=output_size)) | |
model.add(Activation(activ_func)) | |
model.compile(loss=loss, optimizer=optimizer) | |
return model | |
# Hyperparameters | |
np.random.seed(245) | |
window_len = 10 | |
split_ratio = 0.8 # Ratio of training set to total data | |
zero_base = True | |
lstm_neurons = 50 | |
epochs = 100 | |
batch_size = 128 #32 | |
loss = 'mean_squared_error' | |
dropout = 0.24 | |
optimizer = 'adam' | |
def extract_window_data(input_data, target_data, window_len): | |
X = [] | |
y = [] | |
for i in range(len(input_data) - window_len): | |
X.append(input_data[i : i + window_len]) | |
y.append(target_data[i + window_len]) | |
return np.array(X), np.array(y) | |
X, y = extract_window_data(input_data_normalized, target_data_normalized, window_len) | |
# Split the data into training and testing sets | |
split_ratio = 0.8 # Ratio of training set to total data | |
split_index = int(split_ratio * len(X)) | |
X_train, X_test = X[:split_index], X[split_index:] | |
y_train, y_test = y[:split_index], y[split_index:] | |
# Creating model | |
model = build_lstm_model(X_train, output_size=1, neurons=lstm_neurons, dropout=dropout, loss=loss, optimizer=optimizer) | |
# Saved Weights | |
file_path = "./LSTM_" + ticker + "_weights.h5" | |
# Loads the weights | |
model.load_weights(file_path) | |
# Step 4: Make predictions | |
preds = model.predict(X_test) | |
y_test = y[split_index:] | |
# Normalize the target data | |
scaler = MinMaxScaler() | |
target_data_normalized = scaler.fit_transform(target_data) | |
# Inverse normalize the predictions | |
preds = preds.reshape(-1, 1) | |
y_test = y_test.reshape(-1, 1) | |
preds = scaler.inverse_transform(preds) | |
y_test = scaler.inverse_transform(y_test) | |
fig = px.line(x=model_data.index[-len(y_test):], | |
y=[y_test.flatten(), preds.flatten()]) | |
newnames = {'wide_variable_0':'Real Values', 'wide_variable_1': 'Predictions'} | |
fig.for_each_trace(lambda t: t.update(name = newnames[t.name], | |
legendgroup = newnames[t.name], | |
hovertemplate = t.hovertemplate.replace(t.name, newnames[t.name]))) | |
fig.update_layout( | |
xaxis_title="Date", | |
yaxis_title=ticker+" Price", | |
legend_title=" ") | |
st.write(fig) | |
# --- INFO BUBBLE | |
about_data, news = st.tabs(["About", "News"]) | |
with about_data: | |
# Candlestick | |
raw_data = ticker_obj.history(start=start_date, end=end_date) | |
fig = go.Figure(data=[go.Candlestick(x=raw_data.index, | |
open=raw_data['Open'], | |
high=raw_data['High'], | |
low=raw_data['Low'], | |
close=raw_data['Close'])]) | |
fig.update_layout( | |
title=ticker + " candlestick : Open, High, Low and Close", | |
yaxis_title=ticker + ' Price') | |
st.plotly_chart(fig) | |
# Table | |
history_data = raw_data.copy() | |
# Formating index Date | |
history_data.index = pd.to_datetime(history_data.index, format='%Y-%m-%d %H:%M:%S').date | |
history_data.index.name = "Date" | |
history_data.sort_values(by='Date', ascending=False, inplace=True) | |
st.write(history_data) | |
with news: | |
sNews = StockNews(ticker, save_news=False) | |
sNews_df = sNews.read_rss() | |
# Showing most recent news | |
for i in range(10): | |
st.subheader(f"{i+1} - {sNews_df['title'][i]}") | |
st.write(sNews_df['summary'][i]) | |
date_object = datetime.strptime(sNews_df['published'][i], '%a, %d %b %Y %H:%M:%S %z') | |
st.write(f"_{date_object.strftime('%A')}, {date_object.date()}_") | |