File size: 19,966 Bytes
e8ebf39
5b25803
e8ebf39
 
 
 
5b25803
99f35d8
caaa5c8
2814cb7
d74cacd
2814cb7
 
325dca4
452072e
41ad70e
 
452072e
 
e8ebf39
41ad70e
0b28b48
e8ebf39
b455285
01b5fcd
 
 
7bc374b
 
 
 
 
 
9e0de2a
f52f043
 
ffa83ea
7bc374b
 
 
 
 
8520312
 
 
 
9e0de2a
 
e8ebf39
88c1cba
e8ebf39
452ec4c
 
e8ebf39
88c1cba
 
 
e8ebf39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88c1cba
 
 
0f074cc
 
ae04b9d
99f35d8
a2bcc71
99f35d8
25f0178
 
 
2397955
 
 
b325c61
 
 
2397955
 
 
7bc374b
 
 
2814cb7
 
 
9c4d6ae
d4690c5
9c4d6ae
 
924fb11
9c4d6ae
 
 
 
 
f52f043
 
 
 
 
 
 
 
 
 
 
 
 
 
9c4d6ae
e8ebf39
 
 
0f074cc
048eb6f
 
99f35d8
 
 
 
e8ebf39
9c4d6ae
88c1cba
7bc374b
ad304e2
01b5fcd
7bc374b
 
 
a2bcc71
9997b7b
01b5fcd
9997b7b
 
 
7bc374b
 
 
 
 
a2bcc71
9997b7b
01b5fcd
9997b7b
 
7bc374b
9997b7b
9e0de2a
7bc374b
 
 
d74cacd
9e0de2a
d74cacd
f52f043
2814cb7
caaa5c8
9e0de2a
844c34d
7bc374b
d428544
41803fb
 
88c1cba
137e5e2
844c34d
41ad70e
 
e8ebf39
ae04b9d
5b25803
 
 
 
41ad70e
5b25803
 
 
 
 
 
 
 
 
 
 
 
 
 
41ad70e
 
5b25803
 
ae04b9d
5b25803
e8ebf39
ae04b9d
e8ebf39
 
 
 
 
 
 
 
d428544
e8ebf39
 
 
d428544
e8ebf39
d428544
 
 
 
e8ebf39
0f074cc
452ec4c
e8ebf39
88c1cba
d4690c5
2814cb7
d428544
 
7d19a12
 
9e0de2a
aeb450e
3b9ffd5
7d19a12
 
 
 
7bc374b
 
 
 
 
 
 
 
 
 
88c1cba
9e0de2a
0f074cc
 
 
9997b7b
0f074cc
 
88c1cba
844c34d
452ec4c
9c4d6ae
 
 
9997b7b
 
7bc374b
88c1cba
01b5fcd
0f074cc
 
9997b7b
0f074cc
 
 
844c34d
9c4d6ae
 
 
 
7bc374b
9997b7b
7bc374b
88c1cba
 
e8ebf39
d428544
 
 
 
 
 
99f35d8
2814cb7
c2c0fd1
 
e8ebf39
924fb11
46aa706
2814cb7
 
46aa706
 
 
 
 
e8ebf39
d428544
041e0aa
d428544
 
 
 
 
 
e8ebf39
d74cacd
 
 
 
 
 
e8ebf39
88c1cba
c234c07
 
d74cacd
c234c07
 
 
d74cacd
c234c07
d74cacd
 
c234c07
2814cb7
 
 
 
d428544
 
 
 
b325c61
 
 
abd4433
b325c61
abd4433
 
6915a03
17c679c
abd4433
aeb450e
 
17c679c
abd4433
17c679c
 
88c1cba
 
 
7cdc620
9c4d6ae
e8ebf39
f36264a
 
ae04b9d
e8ebf39
 
452ec4c
 
 
924fb11
d428544
25f0178
 
 
 
 
924fb11
f8386bf
d520110
70e7048
25f0178
 
e8ebf39
aeb450e
9d4be7c
 
 
aeb450e
9d4be7c
 
 
aeb450e
9d4be7c
 
 
aeb450e
 
9d4be7c
 
 
 
 
25f0178
924fb11
 
f52f043
 
924fb11
f52f043
 
 
 
 
 
 
924fb11
 
 
 
 
d74cacd
6eee84d
 
 
 
 
 
 
d74cacd
d428544
 
 
 
 
 
 
d74cacd
 
 
 
 
 
 
 
66819b5
41ad70e
 
 
 
 
 
 
 
924fb11
 
 
 
d428544
 
 
 
 
 
 
 
 
 
 
 
924fb11
 
d428544
9d4be7c
 
 
f52f043
 
 
 
 
2814cb7
 
f52f043
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
import os
import re
from hashlib import blake2b
from tempfile import NamedTemporaryFile

import dotenv
from grobid_quantities.quantities import QuantitiesAPI
from langchain.memory import ConversationBufferWindowMemory
# from langchain_community.callbacks import PromptLayerCallbackHandler
from langchain_community.chat_models import ChatOpenAI
from langchain_community.llms.huggingface_endpoint import HuggingFaceEndpoint
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_openai import OpenAIEmbeddings
from streamlit_pdf_viewer import pdf_viewer

from document_qa.ner_client_generic import NERClientGeneric

dotenv.load_dotenv(override=True)

import streamlit as st
from document_qa.document_qa_engine import DocumentQAEngine, DataStorage
from document_qa.grobid_processors import GrobidAggregationProcessor, decorate_text_with_annotations

OPENAI_MODELS = ['gpt-3.5-turbo',
                 "gpt-4",
                 "gpt-4-1106-preview"]

OPENAI_EMBEDDINGS = [
    'text-embedding-ada-002',
    'text-embedding-3-large',
    'openai-text-embedding-3-small'
]

OPEN_MODELS = {
    'Mistral-Nemo-Instruct-2407': 'mistralai/Mistral-Nemo-Instruct-2407',
    'mistral-7b-instruct-v0.3': 'mistralai/Mistral-7B-Instruct-v0.3',
    'Phi-3-mini-4k-instruct': "microsoft/Phi-3-mini-4k-instruct"
}

DEFAULT_OPEN_EMBEDDING_NAME = 'Default (all-MiniLM-L6-v2)'
OPEN_EMBEDDINGS = {
    DEFAULT_OPEN_EMBEDDING_NAME: 'all-MiniLM-L6-v2',
    'SFR-Embedding-Mistral': 'Salesforce/SFR-Embedding-Mistral',
    'SFR-Embedding-2_R': 'Salesforce/SFR-Embedding-2_R',
    'NV-Embed': 'nvidia/NV-Embed-v1',
    'e5-mistral-7b-instruct': 'intfloat/e5-mistral-7b-instruct'
}

if 'rqa' not in st.session_state:
    st.session_state['rqa'] = {}

if 'model' not in st.session_state:
    st.session_state['model'] = None

if 'api_keys' not in st.session_state:
    st.session_state['api_keys'] = {}

if 'doc_id' not in st.session_state:
    st.session_state['doc_id'] = None

if 'loaded_embeddings' not in st.session_state:
    st.session_state['loaded_embeddings'] = None

if 'hash' not in st.session_state:
    st.session_state['hash'] = None

if 'git_rev' not in st.session_state:
    st.session_state['git_rev'] = "unknown"
    if os.path.exists("revision.txt"):
        with open("revision.txt", 'r') as fr:
            from_file = fr.read()
            st.session_state['git_rev'] = from_file if len(from_file) > 0 else "unknown"

if "messages" not in st.session_state:
    st.session_state.messages = []

if 'ner_processing' not in st.session_state:
    st.session_state['ner_processing'] = False

if 'uploaded' not in st.session_state:
    st.session_state['uploaded'] = False

if 'memory' not in st.session_state:
    st.session_state['memory'] = None

if 'binary' not in st.session_state:
    st.session_state['binary'] = None

if 'annotations' not in st.session_state:
    st.session_state['annotations'] = None

if 'should_show_annotations' not in st.session_state:
    st.session_state['should_show_annotations'] = True

if 'pdf' not in st.session_state:
    st.session_state['pdf'] = None

if 'embeddings' not in st.session_state:
    st.session_state['embeddings'] = None

if 'scroll_to_first_annotation' not in st.session_state:
    st.session_state['scroll_to_first_annotation'] = False

st.set_page_config(
    page_title="Articel Chatbot",
    page_icon="📝",
    initial_sidebar_state="expanded",
    layout="wide",
    menu_items={
        'About': "Upload a scientific article in PDF, ask questions, get insights."
    }
)

st.markdown(
    """
        <style>
               .block-container {
                    padding-top: 3rem;
                    padding-bottom: 1rem;
                    padding-left: 1rem;
                    padding-right: 1rem;
                }
        </style>
        """,
    unsafe_allow_html=True
)


def new_file():
    st.session_state['loaded_embeddings'] = None
    st.session_state['doc_id'] = None
    st.session_state['uploaded'] = True
    if st.session_state['memory']:
        st.session_state['memory'].clear()


def clear_memory():
    st.session_state['memory'].clear()


# @st.cache_resource
def init_qa(model, embeddings_name=None, api_key=None):
    ## For debug add: callbacks=[PromptLayerCallbackHandler(pl_tags=["langchain", "chatgpt", "document-qa"])])
    if model in OPENAI_MODELS:
        if embeddings_name is None:
            embeddings_name = 'text-embedding-ada-002'

        st.session_state['memory'] = ConversationBufferWindowMemory(k=4)
        if api_key:
            chat = ChatOpenAI(model_name=model,
                              temperature=0,
                              openai_api_key=api_key,
                              frequency_penalty=0.1)
            if embeddings_name not in OPENAI_EMBEDDINGS:
                st.error(f"The embeddings provided {embeddings_name} are not supported by this model {model}.")
                st.stop()
                return
            embeddings = OpenAIEmbeddings(model=embeddings_name, openai_api_key=api_key)

        else:
            chat = ChatOpenAI(model_name=model,
                              temperature=0,
                              frequency_penalty=0.1)
            embeddings = OpenAIEmbeddings(model=embeddings_name)

    elif model in OPEN_MODELS:
        if embeddings_name is None:
            embeddings_name = DEFAULT_OPEN_EMBEDDING_NAME

        chat = HuggingFaceEndpoint(
            repo_id=OPEN_MODELS[model],
            temperature=0.01,
            max_new_tokens=4092,
            model_kwargs={"max_length": 8192},
            # callbacks=[PromptLayerCallbackHandler(pl_tags=[model, "document-qa"])]
        )
        embeddings = HuggingFaceEmbeddings(
            model_name=OPEN_EMBEDDINGS[embeddings_name])
        # st.session_state['memory'] = ConversationBufferWindowMemory(k=4) if model not in DISABLE_MEMORY else None
    else:
        st.error("The model was not loaded properly. Try reloading. ")
        st.stop()
        return

    storage = DataStorage(embeddings)
    return DocumentQAEngine(chat, storage, grobid_url=os.environ['GROBID_URL'], memory=st.session_state['memory'])


@st.cache_resource
def init_ner():
    quantities_client = QuantitiesAPI(os.environ['GROBID_QUANTITIES_URL'], check_server=True)

    materials_client = NERClientGeneric(ping=True)
    config_materials = {
        'grobid': {
            "server": os.environ['GROBID_MATERIALS_URL'],
            'sleep_time': 5,
            'timeout': 60,
            'url_mapping': {
                'processText_disable_linking': "/service/process/text?disableLinking=True",
                # 'processText_disable_linking': "/service/process/text"
            }
        }
    }

    materials_client.set_config(config_materials)

    gqa = GrobidAggregationProcessor(grobid_quantities_client=quantities_client,
                                     grobid_superconductors_client=materials_client)
    return gqa


gqa = init_ner()


def get_file_hash(fname):
    hash_md5 = blake2b()
    with open(fname, "rb") as f:
        for chunk in iter(lambda: f.read(4096), b""):
            hash_md5.update(chunk)
    return hash_md5.hexdigest()


def play_old_messages(container):
    if st.session_state['messages']:
        for message in st.session_state['messages']:
            if message['role'] == 'user':
                container.chat_message("user").markdown(message['content'])
            elif message['role'] == 'assistant':
                if mode == "LLM":
                    container.chat_message("assistant").markdown(message['content'], unsafe_allow_html=True)
                else:
                    container.chat_message("assistant").write(message['content'])


# is_api_key_provided = st.session_state['api_key']

with st.sidebar:
    st.title("Articel Chatbot")
    st.markdown("Upload a scientific article in PDF, ask questions, get insights.")

    st.divider()
    st.session_state['model'] = model = st.selectbox(
        "Model:",
        options=OPENAI_MODELS + list(OPEN_MODELS.keys()),
        index=(OPENAI_MODELS + list(OPEN_MODELS.keys())).index(
            os.environ["DEFAULT_MODEL"]) if "DEFAULT_MODEL" in os.environ and os.environ["DEFAULT_MODEL"] else 0,
        placeholder="Select model",
        help="Select the LLM model:",
        disabled=st.session_state['doc_id'] is not None or st.session_state['uploaded']
    )
    embedding_choices = OPENAI_EMBEDDINGS if model in OPENAI_MODELS else OPEN_EMBEDDINGS

    st.session_state['embeddings'] = embedding_name = st.selectbox(
        "Embeddings:",
        options=embedding_choices,
        index=0,
        placeholder="Select embedding",
        help="Select the Embedding function:",
        disabled=st.session_state['doc_id'] is not None or st.session_state['uploaded']
    )

    if (model in OPEN_MODELS) and model not in st.session_state['api_keys']:
        if 'HUGGINGFACEHUB_API_TOKEN' not in os.environ:
            api_key = st.text_input('Huggingface API Key', type="password")

            st.markdown("Get it [here](https://huggingface.co/docs/hub/security-tokens)")
        else:
            api_key = os.environ['HUGGINGFACEHUB_API_TOKEN']

        if api_key:
            # st.session_state['api_key'] = is_api_key_provided = True
            if model not in st.session_state['rqa'] or model not in st.session_state['api_keys']:
                with st.spinner("Preparing environment"):
                    st.session_state['api_keys'][model] = api_key
                    # if 'HUGGINGFACEHUB_API_TOKEN' not in os.environ:
                    #     os.environ["HUGGINGFACEHUB_API_TOKEN"] = api_key
                    st.session_state['rqa'][model] = init_qa(model, embedding_name)

    elif model in OPENAI_MODELS and model not in st.session_state['api_keys']:
        if 'OPENAI_API_KEY' not in os.environ:
            api_key = st.text_input('OpenAI API Key', type="password")
            st.markdown("Get it [here](https://platform.openai.com/account/api-keys)")
        else:
            api_key = os.environ['OPENAI_API_KEY']

        if api_key:
            if model not in st.session_state['rqa'] or model not in st.session_state['api_keys']:
                with st.spinner("Preparing environment"):
                    st.session_state['api_keys'][model] = api_key
                    if 'OPENAI_API_KEY' not in os.environ:
                        st.session_state['rqa'][model] = init_qa(model, st.session_state['embeddings'], api_key)
                    else:
                        st.session_state['rqa'][model] = init_qa(model, st.session_state['embeddings'])
    # else:
    #     is_api_key_provided = st.session_state['api_key']

    # st.button(
    #     'Reset chat memory.',
    #     key="reset-memory-button",
    #     on_click=clear_memory,
    #     help="Clear the conversational memory. Currently implemented to retrain the 4 most recent messages.",
    #     disabled=model in st.session_state['rqa'] and st.session_state['rqa'][model].memory is None)

left_column, right_column = st.columns([5, 4])
right_column = right_column.container(border=True)
left_column = left_column.container(border=True)

with right_column:
    uploaded_file = st.file_uploader(
        "Upload a scientific article",
        type=("pdf"),
        on_change=new_file,
        disabled=st.session_state['model'] is not None and st.session_state['model'] not in
                 st.session_state['api_keys'],
        help="The full-text is extracted using Grobid."
    )

    placeholder = st.empty()
    messages = st.container(height=300)

    question = st.chat_input(
        "Ask something about the article",
        # placeholder="Can you give me a short summary?",
        disabled=not uploaded_file
    )

query_modes = {
    "llm": "LLM Q/A",
    "embeddings": "Embeddings",
    "question_coefficient": "Question coefficient"
}

with st.sidebar:
    st.header("Settings")
    mode = st.radio(
        "Query mode",
        ("llm", "embeddings", "question_coefficient"),
        disabled=not uploaded_file,
        index=0,
        horizontal=True,
        format_func=lambda x: query_modes[x],
        help="LLM will respond the question, Embedding will show the "
             "relevant paragraphs to the question in the paper. "
             "Question coefficient attempt to estimate how effective the question will be answered."
    )
    st.session_state['scroll_to_first_annotation'] = st.checkbox(
        "Scroll to context",
        help='The PDF viewer will automatically scroll to the first relevant passage in the document.'
    )
    st.session_state['ner_processing'] = st.checkbox(
        "Identify materials and properties.",
        help='The LLM responses undergo post-processing to extract physical quantities, measurements, and materials mentions.'
    )

    # Add a checkbox for showing annotations
    # st.session_state['show_annotations'] = st.checkbox("Show annotations", value=True)
    # st.session_state['should_show_annotations'] = st.checkbox("Show annotations", value=True)

    chunk_size = st.slider("Text chunks size", -1, 2000, value=-1,
                           help="Size of chunks in which split the document. -1: use paragraphs, > 0 paragraphs are aggregated.",
                           disabled=uploaded_file is not None)
    if chunk_size == -1:
        context_size = st.slider("Context size (paragraphs)", 3, 20, value=10,
                                 help="Number of paragraphs to consider when answering a question",
                                 disabled=not uploaded_file)
    else:
        context_size = st.slider("Context size (chunks)", 3, 10, value=4,
                                 help="Number of chunks to consider when answering a question",
                                 disabled=not uploaded_file)

    st.divider()

    st.markdown(
        """Upload a scientific article as PDF document. Once the spinner stops, you can proceed to ask your questions.""")

    if st.session_state['git_rev'] != "unknown":
        st.markdown("**Revision number**: [" + st.session_state[
            'git_rev'] + "](https://github.com/lfoppiano/document-qa/commit/" + st.session_state['git_rev'] + ")")

if uploaded_file and not st.session_state.loaded_embeddings:
    if model not in st.session_state['api_keys']:
        st.error("Before uploading a document, you must enter the API key. ")
        st.stop()

    with left_column:
        with st.spinner('Reading file, calling Grobid, and creating memory embeddings...'):
            binary = uploaded_file.getvalue()
            tmp_file = NamedTemporaryFile()
            tmp_file.write(bytearray(binary))
            st.session_state['binary'] = binary

            st.session_state['doc_id'] = hash = st.session_state['rqa'][model].create_memory_embeddings(tmp_file.name,
                                                                                                        chunk_size=chunk_size,
                                                                                                        perc_overlap=0.1)
            st.session_state['loaded_embeddings'] = True
            st.session_state.messages = []


def rgb_to_hex(rgb):
    return "#{:02x}{:02x}{:02x}".format(*rgb)


def generate_color_gradient(num_elements):
    # Define warm and cold colors in RGB format
    warm_color = (255, 165, 0)  # Orange
    cold_color = (0, 0, 255)  # Blue

    # Generate a linear gradient of colors
    color_gradient = [
        rgb_to_hex(tuple(int(warm * (1 - i / num_elements) + cold * (i / num_elements)) for warm, cold in
                         zip(warm_color, cold_color)))
        for i in range(num_elements)
    ]

    return color_gradient


with right_column:
    if st.session_state.loaded_embeddings and question and len(question) > 0 and st.session_state.doc_id:
        st.session_state.messages.append({"role": "user", "mode": mode, "content": question})

        for message in st.session_state.messages:
            # with messages.chat_message(message["role"]):
            if message['mode'] == "llm":
                messages.chat_message(message["role"]).markdown(message["content"], unsafe_allow_html=True)
            elif message['mode'] == "embeddings":
                messages.chat_message(message["role"]).write(message["content"])
            elif message['mode'] == "question_coefficient":
                messages.chat_message(message["role"]).markdown(message["content"], unsafe_allow_html=True)
        if model not in st.session_state['rqa']:
            st.error("The API Key for the " + model + " is  missing. Please add it before sending any query. `")
            st.stop()

        text_response = None
        if mode == "embeddings":
            with placeholder:
                with st.spinner("Fetching the relevant context..."):
                    text_response, coordinates = st.session_state['rqa'][model].query_storage(
                        question,
                        st.session_state.doc_id,
                        context_size=context_size
                    )
        elif mode == "llm":
            with placeholder:
                with st.spinner("Generating LLM response..."):
                    _, text_response, coordinates = st.session_state['rqa'][model].query_document(
                        question,
                        st.session_state.doc_id,
                        context_size=context_size
                    )

        elif mode == "question_coefficient":
            with st.spinner("Estimate question/context relevancy..."):
                text_response, coordinates = st.session_state['rqa'][model].analyse_query(
                    question,
                    st.session_state.doc_id,
                    context_size=context_size
                )

        annotations = [[GrobidAggregationProcessor.box_to_dict([cs for cs in c.split(",")]) for c in coord_doc]
                       for coord_doc in coordinates]
        gradients = generate_color_gradient(len(annotations))
        for i, color in enumerate(gradients):
            for annotation in annotations[i]:
                annotation['color'] = color
        st.session_state['annotations'] = [annotation for annotation_doc in annotations for annotation in
                                           annotation_doc]

        if not text_response:
            st.error("Something went wrong. Contact Luca Foppiano ([email protected]) to report the issue.")

        if mode == "llm":
            if st.session_state['ner_processing']:
                with st.spinner("Processing NER on LLM response..."):
                    entities = gqa.process_single_text(text_response)
                    decorated_text = decorate_text_with_annotations(text_response.strip(), entities)
                    decorated_text = decorated_text.replace('class="label material"', 'style="color:green"')
                    decorated_text = re.sub(r'class="label[^"]+"', 'style="color:orange"', decorated_text)
                    text_response = decorated_text
            messages.chat_message("assistant").markdown(text_response, unsafe_allow_html=True)
        else:
            messages.chat_message("assistant").write(text_response)
        st.session_state.messages.append({"role": "assistant", "mode": mode, "content": text_response})

    elif st.session_state.loaded_embeddings and st.session_state.doc_id:
        play_old_messages(messages)

with left_column:
    if st.session_state['binary']:
        with st.container(height=600):
            pdf_viewer(
                input=st.session_state['binary'],
                annotation_outline_size=2,
                annotations=st.session_state['annotations'],
                render_text=True,
                scroll_to_annotation=1 if (st.session_state['annotations'] and st.session_state['scroll_to_first_annotation']) else None
            )