Spaces:
Sleeping
Sleeping
File size: 19,966 Bytes
e8ebf39 5b25803 e8ebf39 5b25803 99f35d8 caaa5c8 2814cb7 d74cacd 2814cb7 325dca4 452072e 41ad70e 452072e e8ebf39 41ad70e 0b28b48 e8ebf39 b455285 01b5fcd 7bc374b 9e0de2a f52f043 ffa83ea 7bc374b 8520312 9e0de2a e8ebf39 88c1cba e8ebf39 452ec4c e8ebf39 88c1cba e8ebf39 88c1cba 0f074cc ae04b9d 99f35d8 a2bcc71 99f35d8 25f0178 2397955 b325c61 2397955 7bc374b 2814cb7 9c4d6ae d4690c5 9c4d6ae 924fb11 9c4d6ae f52f043 9c4d6ae e8ebf39 0f074cc 048eb6f 99f35d8 e8ebf39 9c4d6ae 88c1cba 7bc374b ad304e2 01b5fcd 7bc374b a2bcc71 9997b7b 01b5fcd 9997b7b 7bc374b a2bcc71 9997b7b 01b5fcd 9997b7b 7bc374b 9997b7b 9e0de2a 7bc374b d74cacd 9e0de2a d74cacd f52f043 2814cb7 caaa5c8 9e0de2a 844c34d 7bc374b d428544 41803fb 88c1cba 137e5e2 844c34d 41ad70e e8ebf39 ae04b9d 5b25803 41ad70e 5b25803 41ad70e 5b25803 ae04b9d 5b25803 e8ebf39 ae04b9d e8ebf39 d428544 e8ebf39 d428544 e8ebf39 d428544 e8ebf39 0f074cc 452ec4c e8ebf39 88c1cba d4690c5 2814cb7 d428544 7d19a12 9e0de2a aeb450e 3b9ffd5 7d19a12 7bc374b 88c1cba 9e0de2a 0f074cc 9997b7b 0f074cc 88c1cba 844c34d 452ec4c 9c4d6ae 9997b7b 7bc374b 88c1cba 01b5fcd 0f074cc 9997b7b 0f074cc 844c34d 9c4d6ae 7bc374b 9997b7b 7bc374b 88c1cba e8ebf39 d428544 99f35d8 2814cb7 c2c0fd1 e8ebf39 924fb11 46aa706 2814cb7 46aa706 e8ebf39 d428544 041e0aa d428544 e8ebf39 d74cacd e8ebf39 88c1cba c234c07 d74cacd c234c07 d74cacd c234c07 d74cacd c234c07 2814cb7 d428544 b325c61 abd4433 b325c61 abd4433 6915a03 17c679c abd4433 aeb450e 17c679c abd4433 17c679c 88c1cba 7cdc620 9c4d6ae e8ebf39 f36264a ae04b9d e8ebf39 452ec4c 924fb11 d428544 25f0178 924fb11 f8386bf d520110 70e7048 25f0178 e8ebf39 aeb450e 9d4be7c aeb450e 9d4be7c aeb450e 9d4be7c aeb450e 9d4be7c 25f0178 924fb11 f52f043 924fb11 f52f043 924fb11 d74cacd 6eee84d d74cacd d428544 d74cacd 66819b5 41ad70e 924fb11 d428544 924fb11 d428544 9d4be7c f52f043 2814cb7 f52f043 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 |
import os
import re
from hashlib import blake2b
from tempfile import NamedTemporaryFile
import dotenv
from grobid_quantities.quantities import QuantitiesAPI
from langchain.memory import ConversationBufferWindowMemory
# from langchain_community.callbacks import PromptLayerCallbackHandler
from langchain_community.chat_models import ChatOpenAI
from langchain_community.llms.huggingface_endpoint import HuggingFaceEndpoint
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_openai import OpenAIEmbeddings
from streamlit_pdf_viewer import pdf_viewer
from document_qa.ner_client_generic import NERClientGeneric
dotenv.load_dotenv(override=True)
import streamlit as st
from document_qa.document_qa_engine import DocumentQAEngine, DataStorage
from document_qa.grobid_processors import GrobidAggregationProcessor, decorate_text_with_annotations
OPENAI_MODELS = ['gpt-3.5-turbo',
"gpt-4",
"gpt-4-1106-preview"]
OPENAI_EMBEDDINGS = [
'text-embedding-ada-002',
'text-embedding-3-large',
'openai-text-embedding-3-small'
]
OPEN_MODELS = {
'Mistral-Nemo-Instruct-2407': 'mistralai/Mistral-Nemo-Instruct-2407',
'mistral-7b-instruct-v0.3': 'mistralai/Mistral-7B-Instruct-v0.3',
'Phi-3-mini-4k-instruct': "microsoft/Phi-3-mini-4k-instruct"
}
DEFAULT_OPEN_EMBEDDING_NAME = 'Default (all-MiniLM-L6-v2)'
OPEN_EMBEDDINGS = {
DEFAULT_OPEN_EMBEDDING_NAME: 'all-MiniLM-L6-v2',
'SFR-Embedding-Mistral': 'Salesforce/SFR-Embedding-Mistral',
'SFR-Embedding-2_R': 'Salesforce/SFR-Embedding-2_R',
'NV-Embed': 'nvidia/NV-Embed-v1',
'e5-mistral-7b-instruct': 'intfloat/e5-mistral-7b-instruct'
}
if 'rqa' not in st.session_state:
st.session_state['rqa'] = {}
if 'model' not in st.session_state:
st.session_state['model'] = None
if 'api_keys' not in st.session_state:
st.session_state['api_keys'] = {}
if 'doc_id' not in st.session_state:
st.session_state['doc_id'] = None
if 'loaded_embeddings' not in st.session_state:
st.session_state['loaded_embeddings'] = None
if 'hash' not in st.session_state:
st.session_state['hash'] = None
if 'git_rev' not in st.session_state:
st.session_state['git_rev'] = "unknown"
if os.path.exists("revision.txt"):
with open("revision.txt", 'r') as fr:
from_file = fr.read()
st.session_state['git_rev'] = from_file if len(from_file) > 0 else "unknown"
if "messages" not in st.session_state:
st.session_state.messages = []
if 'ner_processing' not in st.session_state:
st.session_state['ner_processing'] = False
if 'uploaded' not in st.session_state:
st.session_state['uploaded'] = False
if 'memory' not in st.session_state:
st.session_state['memory'] = None
if 'binary' not in st.session_state:
st.session_state['binary'] = None
if 'annotations' not in st.session_state:
st.session_state['annotations'] = None
if 'should_show_annotations' not in st.session_state:
st.session_state['should_show_annotations'] = True
if 'pdf' not in st.session_state:
st.session_state['pdf'] = None
if 'embeddings' not in st.session_state:
st.session_state['embeddings'] = None
if 'scroll_to_first_annotation' not in st.session_state:
st.session_state['scroll_to_first_annotation'] = False
st.set_page_config(
page_title="Articel Chatbot",
page_icon="📝",
initial_sidebar_state="expanded",
layout="wide",
menu_items={
'About': "Upload a scientific article in PDF, ask questions, get insights."
}
)
st.markdown(
"""
<style>
.block-container {
padding-top: 3rem;
padding-bottom: 1rem;
padding-left: 1rem;
padding-right: 1rem;
}
</style>
""",
unsafe_allow_html=True
)
def new_file():
st.session_state['loaded_embeddings'] = None
st.session_state['doc_id'] = None
st.session_state['uploaded'] = True
if st.session_state['memory']:
st.session_state['memory'].clear()
def clear_memory():
st.session_state['memory'].clear()
# @st.cache_resource
def init_qa(model, embeddings_name=None, api_key=None):
## For debug add: callbacks=[PromptLayerCallbackHandler(pl_tags=["langchain", "chatgpt", "document-qa"])])
if model in OPENAI_MODELS:
if embeddings_name is None:
embeddings_name = 'text-embedding-ada-002'
st.session_state['memory'] = ConversationBufferWindowMemory(k=4)
if api_key:
chat = ChatOpenAI(model_name=model,
temperature=0,
openai_api_key=api_key,
frequency_penalty=0.1)
if embeddings_name not in OPENAI_EMBEDDINGS:
st.error(f"The embeddings provided {embeddings_name} are not supported by this model {model}.")
st.stop()
return
embeddings = OpenAIEmbeddings(model=embeddings_name, openai_api_key=api_key)
else:
chat = ChatOpenAI(model_name=model,
temperature=0,
frequency_penalty=0.1)
embeddings = OpenAIEmbeddings(model=embeddings_name)
elif model in OPEN_MODELS:
if embeddings_name is None:
embeddings_name = DEFAULT_OPEN_EMBEDDING_NAME
chat = HuggingFaceEndpoint(
repo_id=OPEN_MODELS[model],
temperature=0.01,
max_new_tokens=4092,
model_kwargs={"max_length": 8192},
# callbacks=[PromptLayerCallbackHandler(pl_tags=[model, "document-qa"])]
)
embeddings = HuggingFaceEmbeddings(
model_name=OPEN_EMBEDDINGS[embeddings_name])
# st.session_state['memory'] = ConversationBufferWindowMemory(k=4) if model not in DISABLE_MEMORY else None
else:
st.error("The model was not loaded properly. Try reloading. ")
st.stop()
return
storage = DataStorage(embeddings)
return DocumentQAEngine(chat, storage, grobid_url=os.environ['GROBID_URL'], memory=st.session_state['memory'])
@st.cache_resource
def init_ner():
quantities_client = QuantitiesAPI(os.environ['GROBID_QUANTITIES_URL'], check_server=True)
materials_client = NERClientGeneric(ping=True)
config_materials = {
'grobid': {
"server": os.environ['GROBID_MATERIALS_URL'],
'sleep_time': 5,
'timeout': 60,
'url_mapping': {
'processText_disable_linking': "/service/process/text?disableLinking=True",
# 'processText_disable_linking': "/service/process/text"
}
}
}
materials_client.set_config(config_materials)
gqa = GrobidAggregationProcessor(grobid_quantities_client=quantities_client,
grobid_superconductors_client=materials_client)
return gqa
gqa = init_ner()
def get_file_hash(fname):
hash_md5 = blake2b()
with open(fname, "rb") as f:
for chunk in iter(lambda: f.read(4096), b""):
hash_md5.update(chunk)
return hash_md5.hexdigest()
def play_old_messages(container):
if st.session_state['messages']:
for message in st.session_state['messages']:
if message['role'] == 'user':
container.chat_message("user").markdown(message['content'])
elif message['role'] == 'assistant':
if mode == "LLM":
container.chat_message("assistant").markdown(message['content'], unsafe_allow_html=True)
else:
container.chat_message("assistant").write(message['content'])
# is_api_key_provided = st.session_state['api_key']
with st.sidebar:
st.title("Articel Chatbot")
st.markdown("Upload a scientific article in PDF, ask questions, get insights.")
st.divider()
st.session_state['model'] = model = st.selectbox(
"Model:",
options=OPENAI_MODELS + list(OPEN_MODELS.keys()),
index=(OPENAI_MODELS + list(OPEN_MODELS.keys())).index(
os.environ["DEFAULT_MODEL"]) if "DEFAULT_MODEL" in os.environ and os.environ["DEFAULT_MODEL"] else 0,
placeholder="Select model",
help="Select the LLM model:",
disabled=st.session_state['doc_id'] is not None or st.session_state['uploaded']
)
embedding_choices = OPENAI_EMBEDDINGS if model in OPENAI_MODELS else OPEN_EMBEDDINGS
st.session_state['embeddings'] = embedding_name = st.selectbox(
"Embeddings:",
options=embedding_choices,
index=0,
placeholder="Select embedding",
help="Select the Embedding function:",
disabled=st.session_state['doc_id'] is not None or st.session_state['uploaded']
)
if (model in OPEN_MODELS) and model not in st.session_state['api_keys']:
if 'HUGGINGFACEHUB_API_TOKEN' not in os.environ:
api_key = st.text_input('Huggingface API Key', type="password")
st.markdown("Get it [here](https://huggingface.co/docs/hub/security-tokens)")
else:
api_key = os.environ['HUGGINGFACEHUB_API_TOKEN']
if api_key:
# st.session_state['api_key'] = is_api_key_provided = True
if model not in st.session_state['rqa'] or model not in st.session_state['api_keys']:
with st.spinner("Preparing environment"):
st.session_state['api_keys'][model] = api_key
# if 'HUGGINGFACEHUB_API_TOKEN' not in os.environ:
# os.environ["HUGGINGFACEHUB_API_TOKEN"] = api_key
st.session_state['rqa'][model] = init_qa(model, embedding_name)
elif model in OPENAI_MODELS and model not in st.session_state['api_keys']:
if 'OPENAI_API_KEY' not in os.environ:
api_key = st.text_input('OpenAI API Key', type="password")
st.markdown("Get it [here](https://platform.openai.com/account/api-keys)")
else:
api_key = os.environ['OPENAI_API_KEY']
if api_key:
if model not in st.session_state['rqa'] or model not in st.session_state['api_keys']:
with st.spinner("Preparing environment"):
st.session_state['api_keys'][model] = api_key
if 'OPENAI_API_KEY' not in os.environ:
st.session_state['rqa'][model] = init_qa(model, st.session_state['embeddings'], api_key)
else:
st.session_state['rqa'][model] = init_qa(model, st.session_state['embeddings'])
# else:
# is_api_key_provided = st.session_state['api_key']
# st.button(
# 'Reset chat memory.',
# key="reset-memory-button",
# on_click=clear_memory,
# help="Clear the conversational memory. Currently implemented to retrain the 4 most recent messages.",
# disabled=model in st.session_state['rqa'] and st.session_state['rqa'][model].memory is None)
left_column, right_column = st.columns([5, 4])
right_column = right_column.container(border=True)
left_column = left_column.container(border=True)
with right_column:
uploaded_file = st.file_uploader(
"Upload a scientific article",
type=("pdf"),
on_change=new_file,
disabled=st.session_state['model'] is not None and st.session_state['model'] not in
st.session_state['api_keys'],
help="The full-text is extracted using Grobid."
)
placeholder = st.empty()
messages = st.container(height=300)
question = st.chat_input(
"Ask something about the article",
# placeholder="Can you give me a short summary?",
disabled=not uploaded_file
)
query_modes = {
"llm": "LLM Q/A",
"embeddings": "Embeddings",
"question_coefficient": "Question coefficient"
}
with st.sidebar:
st.header("Settings")
mode = st.radio(
"Query mode",
("llm", "embeddings", "question_coefficient"),
disabled=not uploaded_file,
index=0,
horizontal=True,
format_func=lambda x: query_modes[x],
help="LLM will respond the question, Embedding will show the "
"relevant paragraphs to the question in the paper. "
"Question coefficient attempt to estimate how effective the question will be answered."
)
st.session_state['scroll_to_first_annotation'] = st.checkbox(
"Scroll to context",
help='The PDF viewer will automatically scroll to the first relevant passage in the document.'
)
st.session_state['ner_processing'] = st.checkbox(
"Identify materials and properties.",
help='The LLM responses undergo post-processing to extract physical quantities, measurements, and materials mentions.'
)
# Add a checkbox for showing annotations
# st.session_state['show_annotations'] = st.checkbox("Show annotations", value=True)
# st.session_state['should_show_annotations'] = st.checkbox("Show annotations", value=True)
chunk_size = st.slider("Text chunks size", -1, 2000, value=-1,
help="Size of chunks in which split the document. -1: use paragraphs, > 0 paragraphs are aggregated.",
disabled=uploaded_file is not None)
if chunk_size == -1:
context_size = st.slider("Context size (paragraphs)", 3, 20, value=10,
help="Number of paragraphs to consider when answering a question",
disabled=not uploaded_file)
else:
context_size = st.slider("Context size (chunks)", 3, 10, value=4,
help="Number of chunks to consider when answering a question",
disabled=not uploaded_file)
st.divider()
st.markdown(
"""Upload a scientific article as PDF document. Once the spinner stops, you can proceed to ask your questions.""")
if st.session_state['git_rev'] != "unknown":
st.markdown("**Revision number**: [" + st.session_state[
'git_rev'] + "](https://github.com/lfoppiano/document-qa/commit/" + st.session_state['git_rev'] + ")")
if uploaded_file and not st.session_state.loaded_embeddings:
if model not in st.session_state['api_keys']:
st.error("Before uploading a document, you must enter the API key. ")
st.stop()
with left_column:
with st.spinner('Reading file, calling Grobid, and creating memory embeddings...'):
binary = uploaded_file.getvalue()
tmp_file = NamedTemporaryFile()
tmp_file.write(bytearray(binary))
st.session_state['binary'] = binary
st.session_state['doc_id'] = hash = st.session_state['rqa'][model].create_memory_embeddings(tmp_file.name,
chunk_size=chunk_size,
perc_overlap=0.1)
st.session_state['loaded_embeddings'] = True
st.session_state.messages = []
def rgb_to_hex(rgb):
return "#{:02x}{:02x}{:02x}".format(*rgb)
def generate_color_gradient(num_elements):
# Define warm and cold colors in RGB format
warm_color = (255, 165, 0) # Orange
cold_color = (0, 0, 255) # Blue
# Generate a linear gradient of colors
color_gradient = [
rgb_to_hex(tuple(int(warm * (1 - i / num_elements) + cold * (i / num_elements)) for warm, cold in
zip(warm_color, cold_color)))
for i in range(num_elements)
]
return color_gradient
with right_column:
if st.session_state.loaded_embeddings and question and len(question) > 0 and st.session_state.doc_id:
st.session_state.messages.append({"role": "user", "mode": mode, "content": question})
for message in st.session_state.messages:
# with messages.chat_message(message["role"]):
if message['mode'] == "llm":
messages.chat_message(message["role"]).markdown(message["content"], unsafe_allow_html=True)
elif message['mode'] == "embeddings":
messages.chat_message(message["role"]).write(message["content"])
elif message['mode'] == "question_coefficient":
messages.chat_message(message["role"]).markdown(message["content"], unsafe_allow_html=True)
if model not in st.session_state['rqa']:
st.error("The API Key for the " + model + " is missing. Please add it before sending any query. `")
st.stop()
text_response = None
if mode == "embeddings":
with placeholder:
with st.spinner("Fetching the relevant context..."):
text_response, coordinates = st.session_state['rqa'][model].query_storage(
question,
st.session_state.doc_id,
context_size=context_size
)
elif mode == "llm":
with placeholder:
with st.spinner("Generating LLM response..."):
_, text_response, coordinates = st.session_state['rqa'][model].query_document(
question,
st.session_state.doc_id,
context_size=context_size
)
elif mode == "question_coefficient":
with st.spinner("Estimate question/context relevancy..."):
text_response, coordinates = st.session_state['rqa'][model].analyse_query(
question,
st.session_state.doc_id,
context_size=context_size
)
annotations = [[GrobidAggregationProcessor.box_to_dict([cs for cs in c.split(",")]) for c in coord_doc]
for coord_doc in coordinates]
gradients = generate_color_gradient(len(annotations))
for i, color in enumerate(gradients):
for annotation in annotations[i]:
annotation['color'] = color
st.session_state['annotations'] = [annotation for annotation_doc in annotations for annotation in
annotation_doc]
if not text_response:
st.error("Something went wrong. Contact Luca Foppiano ([email protected]) to report the issue.")
if mode == "llm":
if st.session_state['ner_processing']:
with st.spinner("Processing NER on LLM response..."):
entities = gqa.process_single_text(text_response)
decorated_text = decorate_text_with_annotations(text_response.strip(), entities)
decorated_text = decorated_text.replace('class="label material"', 'style="color:green"')
decorated_text = re.sub(r'class="label[^"]+"', 'style="color:orange"', decorated_text)
text_response = decorated_text
messages.chat_message("assistant").markdown(text_response, unsafe_allow_html=True)
else:
messages.chat_message("assistant").write(text_response)
st.session_state.messages.append({"role": "assistant", "mode": mode, "content": text_response})
elif st.session_state.loaded_embeddings and st.session_state.doc_id:
play_old_messages(messages)
with left_column:
if st.session_state['binary']:
with st.container(height=600):
pdf_viewer(
input=st.session_state['binary'],
annotation_outline_size=2,
annotations=st.session_state['annotations'],
render_text=True,
scroll_to_annotation=1 if (st.session_state['annotations'] and st.session_state['scroll_to_first_annotation']) else None
)
|