foodvision_mini / model.py
mrdbourke's picture
initial commit
ac5165e
raw
history blame
559 Bytes
import torchvision
from torch import nn
def create_effnetb2_model(num_classes: int):
weights = torchvision.models.EfficientNet_B2_Weights.DEFAULT
transforms = weights.transforms()
model = torchvision.models.efficientnet_b2(weights=weights)
# Freeze base model
for param in model.parameters():
param.requires_grad = False
# Change classifier head
model.classifier = nn.Sequential(
nn.Dropout(p=0.3, inplace=True),
nn.Linear(in_features=1408, out_features=num_classes),
)
return model, transforms