Spaces:
Running
Running
import gradio as gr | |
import torch | |
from model import create_effnetb2_model | |
from timeit import default_timer as timer | |
# Setup class names | |
class_names = ["pizza", "steak", "sushi"] | |
# Create model | |
model, transforms = create_effnetb2_model( | |
num_classes=3, | |
) | |
# Load saved weights | |
model.load_state_dict( | |
torch.load( | |
f="09_pretrained_effnetb2_feature_extractor_pizza_steak_sushi_20_percent.pth", | |
map_location=torch.device("cpu"), # load to CPU | |
) | |
) | |
# Create prediction code | |
def predict(img): | |
start_time = timer() | |
img = transforms(img).unsqueeze(0) | |
model.eval() | |
with torch.inference_mode(): | |
pred_probs = torch.softmax(model(img), dim=1) | |
pred_labels_and_probs = { | |
class_names[i]: float(pred_probs[0][i]) for i in range(len(class_names)) | |
} | |
pred_time = round(timer() - start_time, 5) | |
return pred_labels_and_probs, pred_time | |
# Create Gradio app | |
title = "FoodVision Mini ππ₯©π£" | |
description = "An EfficientNetB2 feature extractor computer vision model to classify images of food as pizza, steak or sushi." | |
article = "Created at [09. PyTorch Model Deployment](https://www.learnpytorch.io/09_pytorch_model_deployment/)." | |
example_dir = "demo/examples" | |
demo = gr.Interface( | |
fn=predict, | |
inputs=gr.Image(type="pil"), | |
outputs=[ | |
gr.Label(num_top_classes=3, label="Predictions"), | |
gr.Number(label="Prediction time (s)"), | |
], | |
# examples="demo/foodvision_mini/examples", | |
interpretation="default", | |
title=title, | |
description=description, | |
article=article, | |
) | |
demo.launch() |