foodvision_mini / app.py
mrdbourke's picture
initial commit
ac5165e
raw
history blame
1.58 kB
import gradio as gr
import torch
from model import create_effnetb2_model
from timeit import default_timer as timer
# Setup class names
class_names = ["pizza", "steak", "sushi"]
# Create model
model, transforms = create_effnetb2_model(
num_classes=3,
)
# Load saved weights
model.load_state_dict(
torch.load(
f="09_pretrained_effnetb2_feature_extractor_pizza_steak_sushi_20_percent.pth",
map_location=torch.device("cpu"), # load to CPU
)
)
# Create prediction code
def predict(img):
start_time = timer()
img = transforms(img).unsqueeze(0)
model.eval()
with torch.inference_mode():
pred_probs = torch.softmax(model(img), dim=1)
pred_labels_and_probs = {
class_names[i]: float(pred_probs[0][i]) for i in range(len(class_names))
}
pred_time = round(timer() - start_time, 5)
return pred_labels_and_probs, pred_time
# Create Gradio app
title = "FoodVision Mini πŸ•πŸ₯©πŸ£"
description = "An EfficientNetB2 feature extractor computer vision model to classify images of food as pizza, steak or sushi."
article = "Created at [09. PyTorch Model Deployment](https://www.learnpytorch.io/09_pytorch_model_deployment/)."
example_dir = "demo/examples"
demo = gr.Interface(
fn=predict,
inputs=gr.Image(type="pil"),
outputs=[
gr.Label(num_top_classes=3, label="Predictions"),
gr.Number(label="Prediction time (s)"),
],
# examples="demo/foodvision_mini/examples",
interpretation="default",
title=title,
description=description,
article=article,
)
demo.launch()