Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import torch.nn.functional as F | |
from torchvision import transforms | |
import os | |
from contextlib import nullcontext | |
import comfy.model_management as mm | |
from comfy.utils import ProgressBar, load_torch_file | |
import folder_paths | |
from .depth_anything_v2.dpt import DepthAnythingV2 | |
from contextlib import nullcontext | |
try: | |
from accelerate import init_empty_weights | |
from accelerate.utils import set_module_tensor_to_device | |
is_accelerate_available = True | |
except: | |
is_accelerate_available = False | |
pass | |
class DownloadAndLoadDepthAnythingV2Model: | |
def INPUT_TYPES(s): | |
return {"required": { | |
"model": ( | |
[ | |
'depth_anything_v2_vits_fp16.safetensors', | |
'depth_anything_v2_vits_fp32.safetensors', | |
'depth_anything_v2_vitb_fp16.safetensors', | |
'depth_anything_v2_vitb_fp32.safetensors', | |
'depth_anything_v2_vitl_fp16.safetensors', | |
'depth_anything_v2_vitl_fp32.safetensors', | |
'depth_anything_v2_metric_hypersim_vitl_fp32.safetensors', | |
'depth_anything_v2_metric_vkitti_vitl_fp32.safetensors' | |
], | |
{ | |
"default": 'depth_anything_v2_vitl_fp32.safetensors' | |
}), | |
}, | |
} | |
RETURN_TYPES = ("DAMODEL",) | |
RETURN_NAMES = ("da_v2_model",) | |
FUNCTION = "loadmodel" | |
CATEGORY = "DepthAnythingV2" | |
DESCRIPTION = """ | |
Models autodownload to `ComfyUI\models\depthanything` from | |
https://huggingface.co/Kijai/DepthAnythingV2-safetensors/tree/main | |
fp16 reduces quality by a LOT, not recommended. | |
""" | |
def loadmodel(self, model): | |
device = mm.get_torch_device() | |
dtype = torch.float16 if "fp16" in model else torch.float32 | |
model_configs = { | |
'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384]}, | |
'vitb': {'encoder': 'vitb', 'features': 128, 'out_channels': [96, 192, 384, 768]}, | |
'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]}, | |
#'vitg': {'encoder': 'vitg', 'features': 384, 'out_channels': [1536, 1536, 1536, 1536]} | |
} | |
custom_config = { | |
'model_name': model, | |
} | |
if not hasattr(self, 'model') or self.model == None or custom_config != self.current_config: | |
self.current_config = custom_config | |
download_path = os.path.join(folder_paths.models_dir, "depthanything") | |
model_path = os.path.join(download_path, model) | |
if not os.path.exists(model_path): | |
print(f"Downloading model to: {model_path}") | |
from huggingface_hub import snapshot_download | |
snapshot_download(repo_id="Kijai/DepthAnythingV2-safetensors", | |
allow_patterns=[f"*{model}*"], | |
local_dir=download_path, | |
local_dir_use_symlinks=False) | |
print(f"Loading model from: {model_path}") | |
if "vitl" in model: | |
encoder = "vitl" | |
elif "vitb" in model: | |
encoder = "vitb" | |
elif "vits" in model: | |
encoder = "vits" | |
if "hypersim" in model: | |
max_depth = 20.0 | |
else: | |
max_depth = 80.0 | |
with (init_empty_weights() if is_accelerate_available else nullcontext()): | |
if 'metric' in model: | |
self.model = DepthAnythingV2(**{**model_configs[encoder], 'is_metric': True, 'max_depth': max_depth}) | |
else: | |
self.model = DepthAnythingV2(**model_configs[encoder]) | |
state_dict = load_torch_file(model_path) | |
if is_accelerate_available: | |
for key in state_dict: | |
set_module_tensor_to_device(self.model, key, device=device, dtype=dtype, value=state_dict[key]) | |
else: | |
self.model.load_state_dict(state_dict) | |
self.model.eval() | |
da_model = { | |
"model": self.model, | |
"dtype": dtype, | |
"is_metric": self.model.is_metric | |
} | |
return (da_model,) | |
class DepthAnything_V2: | |
def INPUT_TYPES(s): | |
return {"required": { | |
"da_model": ("DAMODEL", ), | |
"images": ("IMAGE", ), | |
}, | |
} | |
RETURN_TYPES = ("IMAGE",) | |
RETURN_NAMES =("image",) | |
FUNCTION = "process" | |
CATEGORY = "DepthAnythingV2" | |
DESCRIPTION = """ | |
https://depth-anything-v2.github.io | |
""" | |
def process(self, da_model, images): | |
device = mm.get_torch_device() | |
offload_device = mm.unet_offload_device() | |
model = da_model['model'] | |
dtype=da_model['dtype'] | |
B, H, W, C = images.shape | |
#images = images.to(device) | |
images = images.permute(0, 3, 1, 2) | |
orig_H, orig_W = H, W | |
if W % 14 != 0: | |
W = W - (W % 14) | |
if H % 14 != 0: | |
H = H - (H % 14) | |
if orig_H % 14 != 0 or orig_W % 14 != 0: | |
images = F.interpolate(images, size=(H, W), mode="bilinear") | |
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) | |
normalized_images = normalize(images) | |
pbar = ProgressBar(B) | |
out = [] | |
model.to(device) | |
autocast_condition = (dtype != torch.float32) and not mm.is_device_mps(device) | |
with torch.autocast(mm.get_autocast_device(device), dtype=dtype) if autocast_condition else nullcontext(): | |
for img in normalized_images: | |
depth = model(img.unsqueeze(0).to(device)) | |
depth = (depth - depth.min()) / (depth.max() - depth.min()) | |
out.append(depth.cpu()) | |
pbar.update(1) | |
model.to(offload_device) | |
depth_out = torch.cat(out, dim=0) | |
depth_out = depth_out.unsqueeze(-1).repeat(1, 1, 1, 3).cpu().float() | |
final_H = (orig_H // 2) * 2 | |
final_W = (orig_W // 2) * 2 | |
if depth_out.shape[1] != final_H or depth_out.shape[2] != final_W: | |
depth_out = F.interpolate(depth_out.permute(0, 3, 1, 2), size=(final_H, final_W), mode="bilinear").permute(0, 2, 3, 1) | |
depth_out = (depth_out - depth_out.min()) / (depth_out.max() - depth_out.min()) | |
depth_out = torch.clamp(depth_out, 0, 1) | |
if da_model['is_metric']: | |
depth_out = 1 - depth_out | |
return (depth_out,) | |
NODE_CLASS_MAPPINGS = { | |
"DepthAnything_V2": DepthAnything_V2, | |
"DownloadAndLoadDepthAnythingV2Model": DownloadAndLoadDepthAnythingV2Model | |
} | |
NODE_DISPLAY_NAME_MAPPINGS = { | |
"DepthAnything_V2": "Depth Anything V2", | |
"DownloadAndLoadDepthAnythingV2Model": "DownloadAndLoadDepthAnythingV2Model" | |
} |