File size: 6,800 Bytes
b24d496
 
 
 
 
 
 
 
67beed8
 
b24d496
a5ee5e1
 
 
b24d496
 
 
 
a5ee5e1
 
b24d496
67beed8
 
 
b24d496
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
acb485b
ede4b3c
b24d496
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d40914
7be11b2
b24d496
 
 
 
 
 
 
 
 
 
 
 
 
9bef663
 
 
 
e99ccbb
67beed8
 
7be11b2
67beed8
 
 
b24d496
67beed8
b24d496
 
67beed8
 
b24d496
 
 
 
 
 
67beed8
b24d496
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
from fastapi import FastAPI, HTTPException
from semantic_search import SemanticSearch
from transaction_maps_search import TransactionMapsSearch
from pydantic import BaseModel
import os
import datetime
import json
import traceback
from llm.common import LlmParams, LlmPredictParams
from llm.deepinfra_api import DeepInfraApi

# Check if logs are enabled
ENABLE_LOGS = os.getenv("ENABLE_LOGS", "0") == "1"

# Set the path for log files
LOGS_BASE_PATH = os.getenv("LOGS_BASE_PATH", "logs")

# Create logs directory if it doesn't exist
if ENABLE_LOGS and not os.path.exists(LOGS_BASE_PATH):
    os.makedirs(LOGS_BASE_PATH)

LLM_API_URL = os.getenv("LLM_API_URL", "")
LLM_API_KEY = os.getenv("LLM_API_KEY", "")
LLM_USE_DEEPINFRA = os.getenv("LLM_USE_DEEPINFRA", "") == "1"

class Query(BaseModel):
    query: str = ''
    top: int = 10
    use_qe: bool = False
    use_olympic: bool = False
    find_transaction_maps_by_question: bool = False
    find_transaction_maps_by_operation: bool = False
    request_id: str = ''
    categories: dict = {'НКРФ': False,
                        'ГКРФ': False,
                        'ТКРФ': False,
                        'Федеральный закон': False,
                        'Письмо Минфина': False,
                        'Письмо ФНС': False,
                        'Приказ ФНС': False,
                        'Постановление Правительства': False,
                        'Судебный документ': False,
                        'ВНД': False,
                        'Бухгалтерский документ': False}
    llm_params: LlmParams = None

search = SemanticSearch()
transaction_maps_search = TransactionMapsSearch()

app = FastAPI(
    title="multistep-semantic-search-app",
    description="multistep-semantic-search-app",
    version="0.1.0",
)


def log_query_result(query, top, request_id, result):
    if not ENABLE_LOGS:
        return

    timestamp = datetime.datetime.now().strftime("%Y%m%d%H%M%S")
    log_file_path = os.path.join(LOGS_BASE_PATH, f"{timestamp}.json")

    log_data = {
        "timestamp": timestamp,
        "query": query,
        "top": top,
        "request_id": request_id,
        "result": result
    }

    with open(log_file_path, 'w', encoding='utf-8') as log_file:
        json.dump(log_data, log_file, indent=2, ensure_ascii=False)


@app.post('/search')
async def search_route(query: Query) -> dict:

    default_llm_params = LlmParams(url=LLM_API_URL,api_key=LLM_API_KEY, model="meta-llama/Llama-3.3-70B-Instruct", predict_params=LlmPredictParams(temperature=0.15, top_p=0.95, min_p=0.05, seed=42, repetition_penalty=1.2, presence_penalty=1.1, max_tokens=6000))

    try:
        question = getattr(query, "query", None)
        if not question:
            raise ValueError("Query parameter 'query' is required and cannot be empty.")

        top = getattr(query, "top", 15)
        use_qe = getattr(query, "use_qe", False)
        request_id = getattr(query, "request_id", None)
        categories = getattr(query, "categories", None)
        use_olympic = getattr(query, "use_olympic", False)
        find_transaction_maps_by_question = getattr(query, "find_transaction_maps_by_question", False)
        find_transaction_maps_by_operation = getattr(query, "find_transaction_maps_by_operation", False)

        request_llm_params = getattr(query, "llm_params", None)
        
        print(request_llm_params)
        
        llm_params = default_llm_params#getattr(query, "llm_params", default_llm_params)
            
        if LLM_USE_DEEPINFRA:
            print(llm_params.model)
            llm_api = DeepInfraApi(llm_params)
                                   
        
        if find_transaction_maps_by_question or find_transaction_maps_by_operation:
            transaction_maps_results, answer = await transaction_maps_search.search_transaction_map(
                query=question,
                find_transaction_maps_by_question=find_transaction_maps_by_question,
                k_neighbours=top,
                llm_api=llm_api)

            response = {'transaction_maps_results': transaction_maps_results}

        else:
            modified_query, titles, concat_docs, \
            relevant_consultations, predicted_explanation, \
            llm_responses = await search.search(question, use_qe, use_olympic, categories, llm_params)

            results = [{'title': str(item1), 'text_for_llm': str(item2)} for item1, item2 in
                        zip(titles, concat_docs)]

            consultations = [{'title': key, 'text': value} for key, value in relevant_consultations.items()]
            explanations = [{'title': key, 'text': value} for key, value in predicted_explanation.items()]

            response = {'query': modified_query, 'results': results,
                        'consultations': consultations, 'explanations': explanations, 'llm_responses': llm_responses}

        log_query_result(question, top, request_id, response)

        return response
    except ValueError as ve:
        traceback.print_exception(type(ve), ve, ve.__traceback__)
        raise HTTPException(status_code=400, detail=str(ve))
    except Exception as e:
        traceback.print_exception(type(e), e, e.__traceback__)
        raise HTTPException(status_code=500, detail=f"Unexpected error: {str(e)}")


@app.get('/health')
def health():
    return {"status": "ok"}


@app.get('/read_logs')
def read_logs():
    logs = []
    for log_file in os.listdir(LOGS_BASE_PATH):
        if log_file.endswith(".json"):
            with open(os.path.join(LOGS_BASE_PATH, log_file), 'r', encoding='utf-8') as file:
                log_data = json.load(file)
                logs.append(log_data)
    return logs


@app.get('/analyze_logs')
def analyze_logs():
    logs_by_query_top = {}
    for log_file in os.listdir(LOGS_BASE_PATH):
        if log_file.endswith(".json"):
            with open(os.path.join(LOGS_BASE_PATH, log_file), 'r', encoding='utf-8') as file:
                log_data = json.load(file)
                query = log_data.get("query", "")
                top = log_data.get("top", "")
                request_id = log_data.get("request_id", "")
                # Group logs by query and top
                key = f"{query}_{top}"
                if key not in logs_by_query_top:
                    logs_by_query_top[key] = []
                logs_by_query_top[key].append(log_data)

    # Analyze logs and filter out logs with different results for the same query and top
    invalid_logs = []
    for key, logs in logs_by_query_top.items():
        if len(set(json.dumps(log['result']) for log in logs)) > 1:
            invalid_logs.extend(logs)

    return invalid_logs