File size: 49,440 Bytes
b24d496
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d40914
b24d496
 
 
5fc439f
1d40914
 
5fc439f
1d40914
 
53ef13d
1d40914
 
 
b24d496
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5fc439f
 
b24d496
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
import gc
import traceback
from legal_info_search_utils.rules_utils import use_rules
from itertools import islice
import os
import torch
import numpy as np
from faiss import IndexFlatIP
from datasets import Dataset as dataset
from transformers import AutoTokenizer, AutoModel
from legal_info_search_utils.utils import query_tokenization, query_embed_extraction
import requests
import re
import json
import pymorphy3
from torch.cuda.amp import autocast
from elasticsearch_module import search_company
import torch.nn.functional as F
import pickle
from llm.prompts import LLM_PROMPT_QE, LLM_PROMPT_OLYMPIC, LLM_PROMPT_KEYS
from llm.vllm_api import LlmApi, LlmParams
from huggingface import dataset_utils

global_data_path = os.environ.get("GLOBAL_DATA_PATH", "./legal_info_search_data/")

# access token huggingface. Если задан, то используется модель с HF
hf_token = os.environ.get("HF_TOKEN", None)
hf_dataset = os.environ.get("HF_DATASET", None)
hf_model_name = os.environ.get("HF_MODEL_NAME", "")

if hf_token is not None and hf_dataset is not None:
    global_data_path = dataset_utils.get_global_data_path()+global_data_path
    print(f"Global data path: {global_data_path}")
    

global_model_path = os.environ.get("GLOBAL_MODEL_PATH", "./models/20240202_204910_ep8")

data_path_consult = global_data_path + "external_data"

internal_docs_data_path = global_data_path + "nmd_full"
spec_internal_docs_data_path = global_data_path + "nmd_short"

accounting_data_path = global_data_path + "bu"

companies_map_path = global_data_path + "companies_map/companies_map.json"

dict_path = global_data_path + "dict/dict_20241030.pkl"

general_nmd_path = global_data_path + "companies_map/general_nmd.json"

consultations_dataset_path = global_data_path + "consult_data"

explanations_dataset_path = global_data_path + "explanations"

explanations_for_llm_path = global_data_path + "explanations_for_llm/explanations_for_llm.json"

rules_list_path = global_data_path + "rules_list/terms.txt"

db_data_types = ['НКРФ', 'ГКРФ', 'ТКРФ', 'Федеральный закон', 'Письмо Минфина', 'Письмо ФНС',
    'Приказ ФНС', 'Постановление Правительства', 'Судебный документ', 'ВНД', 'Бухгалтерский документ']

device = os.environ.get("MODEL_DEVICE", 'cuda' if torch.cuda.is_available() else 'cpu')


llm_api_endpoint = os.environ.get("LLM_API_ENDPOINT", "")

headers = {'Content-Type': 'application/json'}

def_k = 15

class SemanticSearch:
    def __init__(self, do_normalization: bool = True):

        self.device = device
        self.do_normalization = do_normalization
        self.load_model()

        # Основная база
        self.full_base_search = True
        self.index_consult = IndexFlatIP(self.embedding_dim)
        self.index_explanations = IndexFlatIP(self.embedding_dim)
        self.index_all_docs_with_accounting = IndexFlatIP(self.embedding_dim)
        self.index_internal_docs = IndexFlatIP(self.embedding_dim)
        self.spec_index_internal_docs = IndexFlatIP(self.embedding_dim)
        self.index_teaser = IndexFlatIP(self.embedding_dim)

        self.load_data()

        # Обработка встраиваний
        def process_embeddings(docs):
            embeddings = torch.cat([torch.unsqueeze(torch.Tensor(x['doc_embedding']), 0) for x in docs], dim=0)
            if self.do_normalization:
                embeddings = F.normalize(embeddings, dim=-1).numpy()
            return embeddings

        # База ВНД
        self.internal_docs_embeddings = process_embeddings(self.internal_docs)
        self.index_internal_docs.add(self.internal_docs_embeddings)

        self.spec_internal_docs_embeddings = process_embeddings(self.spec_internal_docs)
        self.spec_index_internal_docs.add(self.spec_internal_docs_embeddings)

        self.all_docs_with_accounting_embeddings = process_embeddings(self.all_docs_with_accounting)
        self.index_all_docs_with_accounting.add(self.all_docs_with_accounting_embeddings)

        # База консультаций
        self.consult_embeddings = process_embeddings(self.all_consultations)
        self.index_consult.add(self.consult_embeddings)

        # База разъяснений
        self.explanations_embeddings = process_embeddings(self.all_explanations)
        self.index_explanations.add(self.explanations_embeddings)


    @staticmethod
    def get_main_info_with_llm(prompt: str):
        response = requests.post(
            url=llm_api_endpoint,
            json={'prompt': ' [INST] ' + prompt + ' [/INST]',
                'temperature': 0.0,
                'n_predict': 2500.0,
                'top_p': 0.95,
                'min_p': 0.05,
                'repeat_penalty': 1.2,
                'stop': []})
        answer = response.json()['content']
        return answer

    @staticmethod
    def rerank_by_avg_score(refs, scores_to_take=3):
        docs = {}
        regex = r'_(\d{1,3})$'

        refs = [(re.sub(regex, '', ref[0]), ref[1], float(ref[2])) for ref in refs]

        for ref in refs:
            if ref[0] not in docs.keys():
                docs[ref[0]] = {'contents': [ref[1]], 'scores': [ref[2]]}
            elif len(docs[ref[0]]['scores']) < scores_to_take:
                docs[ref[0]]['contents'].append(ref[1])
                docs[ref[0]]['scores'].append(ref[2])

        for ref in docs:
            docs[ref]['avg_score'] = np.mean(docs[ref]['scores'])

        sorted_docs = sorted(docs.items(), key=lambda x: x[1]['avg_score'], reverse=True)
        result_refs = [ref[0] for ref in sorted_docs]
        return result_refs

    async def olymp_think(self, query, sources, llm_params: LlmParams = None):
        sources_text = ''
        res = ''
        
        for i, source in enumerate(sources):
            sources_text += f'Источник [{i + 1}]: {sources[source]}\n'
        
        # Если llm_params не переданы, значит используем микстраль по старому алгоритму
        # TODO: Сделать api для микстрали (надо ли?)
        if llm_params is None:
            step = LLM_PROMPT_OLYMPIC.format(query=query, sources=sources_text)
            res = self.get_main_info_with_llm(step)
        else:
            llm_api = LlmApi(llm_params)
            query_for_trim = LLM_PROMPT_OLYMPIC.format(query=query, sources='')
            trimmed_sources_result = await llm_api.trim_sources(sources_text, query_for_trim)
            prompt = LLM_PROMPT_OLYMPIC.format(query=query, sources=trimmed_sources_result["result"])
            res = await llm_api.predict(prompt)
        return res

    @staticmethod
    def parse_step(text):
        step4_start = text.find('(4)')
        if step4_start != -1:
            step4_start = 0
        step5_start = text.find('(5)')
        if step5_start == -1:
            step5_start = 0
        if step4_start + 3 < step5_start:
            extracted_comment = text[step4_start + 3:step5_start]
        else:
            extracted_comment = ''
        if '$$' in text:
            extracted_comment = ''
        extracted_content = re.findall(r'\[(.*?)\]', text[step5_start:])
        extracted_numbers = []
        for item in extracted_content:
            if item.isdigit():
                extracted_numbers.append(int(item))
        return extracted_comment, extracted_numbers

    @staticmethod
    def lemmatize_query(text):
        morph = pymorphy3.MorphAnalyzer()
        signs = ',.<>?;\'\":}{!)(][-'
        words = text.split()
        lemmas = []
        for word in words:
            if not word.isupper():
                word = morph.parse(word)[0].normal_form
            lemmas.append(word)
        for i, lemma in enumerate(lemmas):
            while lemma[0] in signs and len(lemma) > 1:
                lemma = lemma[1:]
                lemmas[i] = lemma
            while lemma[-1] in signs and len(lemma) > 1:
                lemma = lemma[:-1]
                lemmas[i] = lemma
        return " ".join(lemmas)

    @staticmethod
    def mark_for_one_word_dict(lem_dict):
        terms_first_word = set()
        first_word_matching_names = {}
        first_word_names_to_remove = {}
        for name in lem_dict:
            first_word = name.split()[0]
            if first_word in terms_first_word:
                lem_dict[name]['one_word_searchable'] = False
                first_word_names_to_remove[first_word] = first_word_matching_names[first_word]
            else:
                terms_first_word.add(first_word)
                first_word_matching_names[first_word] = name
        for first_word in first_word_names_to_remove:
            name = first_word_names_to_remove[first_word]
            lem_dict[name]['one_word_searchable'] = False
        return lem_dict

    def lemmatize_dict(self, terms_dict):
        lem_dict = {}
        morph = pymorphy3.MorphAnalyzer()
        for name in terms_dict:
            if not name.isupper():
                lem_name = morph.parse(name)[0].normal_form
            else:
                lem_name = name
            lem_dict[lem_name] = {}
            lem_dict[lem_name]['name'] = name
            lem_dict[lem_name]['definitions'] = terms_dict[name]['definitions']
            lem_dict[lem_name]['titles'] = terms_dict[name]['titles']
            lem_dict[lem_name]['sources'] = terms_dict[name]['sources']
            lem_dict[lem_name]['is_multi_def'] = terms_dict[name]['is_multi_def']
            lem_dict[lem_name]['one_word_searchable'] = True
        lem_dict = self.mark_for_one_word_dict(lem_dict)
        return lem_dict

    @staticmethod
    def separate_one_word_searchable_dict(lem_dict):
        lem_dict_fast = {}
        lem_dict_slow = {}
        for name in lem_dict:
            if lem_dict[name]['one_word_searchable']:
                lem_dict_fast[name] = {}
                lem_dict_fast[name]['name'] = lem_dict[name]['name']
                lem_dict_fast[name]['definitions'] = lem_dict[name]['definitions']
                lem_dict_fast[name]['titles'] = lem_dict[name]['titles']
                lem_dict_fast[name]['sources'] = lem_dict[name]['sources']
                lem_dict_fast[name]['is_multi_def'] = lem_dict[name]['is_multi_def']
            else:
                lem_dict_slow[name] = {}
                lem_dict_slow[name]['name'] = lem_dict[name]['name']
                lem_dict_slow[name]['definitions'] = lem_dict[name]['definitions']
                lem_dict_slow[name]['titles'] = lem_dict[name]['titles']
                lem_dict_slow[name]['sources'] = lem_dict[name]['sources']
                lem_dict_slow[name]['is_multi_def'] = lem_dict[name]['is_multi_def']
        return lem_dict_fast, lem_dict_slow

    @staticmethod
    def extract_original_phrase(original_text, lemmatized_text, lemmatized_phrase):
        words = original_text.split()
        words_lem = lemmatized_text.split()
        words_lem_phrase = lemmatized_phrase.split()
        for i, word in enumerate(words_lem):
            if word == words_lem_phrase[0]:
                words_full = ' '.join(words_lem[i:i + len(words_lem_phrase)])
                if words_full == lemmatized_phrase:
                    original_phrase = ' '.join(words[i:i + len(words_lem_phrase)])
                    return original_phrase
        return False

    def substitute_definitions(self, original_text, lem_dict, lem_dict_fast, lem_dict_slow, for_llm=False):
        lemmatized_text = self.lemmatize_query(original_text)
        found_phrases = set()
        phrases_to_add1 = []
        phrases_to_add2 = []

        words = lemmatized_text.split()
        sorted_lem_dict = sorted(lem_dict_slow.items(), key=lambda x: len(x[0]),
                                 reverse=True)  # можно сэкономить милисекунды и вынести сортировку по длине куда-то наружу

        for lemmatized_phrase_tuple in sorted_lem_dict:
            lemmatized_phrase = lemmatized_phrase_tuple[0]
            is_new_phrase = True
            is_one_word = True
            lem_phrase_words = lemmatized_phrase.split()
            if len(lem_phrase_words) > 1:
                is_one_word = False
            if lemmatized_phrase in lemmatized_text and not is_one_word:
                if lemmatized_phrase in found_phrases:
                    is_new_phrase = False

                else:
                    found_phrases.add(lemmatized_phrase)
                    original_phrase = self.extract_original_phrase(original_text, lemmatized_text, lemmatized_phrase)
                    phrases_to_add2.append((lemmatized_phrase, original_phrase))
            if is_one_word and lemmatized_phrase in words:
                for phrase in found_phrases:
                    if lemmatized_phrase in phrase:
                        is_new_phrase = False
                if is_new_phrase:
                    found_phrases.add(lemmatized_phrase)
                    original_phrase = self.extract_original_phrase(original_text, lemmatized_text, lemmatized_phrase)
                    phrases_to_add2.append((lemmatized_phrase, original_phrase))

        for word in words:
            is_new_phrase = True
            if word in lem_dict_fast:
                for phrase in found_phrases:
                    if word in phrase:
                        is_new_phrase = False
                        break
                if is_new_phrase:
                    found_phrases.add(word)
                    original_phrase = self.extract_original_phrase(original_text, lemmatized_text, word)
                    phrases_to_add1.append((word, original_phrase))
        phrases_to_add = phrases_to_add1 + phrases_to_add2
        definition_num = 0
        definitions_info = []
        substituted_text = original_text
        try:
            if for_llm:
                for term, original_phrase in phrases_to_add:

                    if lem_dict[term]['is_multi_def']:
                        definition_num = 0  # Здесь может быть логика контекстно-зависимого выбора нужного определения
                    term_start = original_text.find(original_phrase)
                    if type(lem_dict[term]['definitions']) is list:
                        definitions_info.append(f"{term}-{lem_dict[term]['definitions'][definition_num]}")
                    else:
                        definitions_info.append(f"{term}-{lem_dict[term]['definitions']}")

                    if definitions_info:
                        definitions_str = ", ".join(definitions_info)
                        substituted_text = f"{original_text}. Дополнительная информация: {definitions_str}"
                    else:
                        substituted_text = original_text
            else:
                for term, original_phrase in phrases_to_add:
                    if lem_dict[term]['is_multi_def']:
                        # Здесь может быть логика контекстно-зависимого выбора нужного определения
                        definition_num = 0
                    term_start = substituted_text.find(original_phrase)
                    if type(lem_dict[term]['definitions']) is list:
                        substituted_text = substituted_text[:term_start + len(
                            original_phrase)] + f" ({lem_dict[term]['definitions'][definition_num]})" + substituted_text[
                                                                                                        term_start + len(
                                                                                                        original_phrase):]
                    else:
                        substituted_text = substituted_text[:term_start + len(
                            original_phrase)] + f" ({lem_dict[term]['definitions']})" + substituted_text[
                                                                                                        term_start + len(
                                                                                                            original_phrase):]

        except Exception as e:
            print(f'error processing\n {original_text}\n {term}: {e}')

        return substituted_text, phrases_to_add

    def filter_by_types(self,
                        pred: list[str] = None,
                        scores: list[float] = None,
                        indexes: list[int] = None,
                        docs_embeddings: list = None,
                        ctgs: dict = None):

        ctgs = [ctg for ctg in ctgs.keys() if ctgs[ctg]]

        filtred_pred, filtred_scores, filtred_indexes, filtred_docs_embeddings = [], [], [], []
        for doc_name, score, index, doc_embedding in zip(pred, scores, indexes, docs_embeddings):
            if ('ВНД' in doc_name and 'ВНД' in ctgs) or self.all_docs_with_accounting[index]['doc_type'] in ctgs:
                filtred_pred.append(doc_name)
                filtred_scores.append(score)
                filtred_indexes.append(index)
                filtred_docs_embeddings.append(doc_embedding)

        return filtred_pred, filtred_scores, filtred_indexes, filtred_docs_embeddings

    def get_types_of_docs(self, all_docs):

        def type_determiner(doc_name):

            names = ['НКРФ', 'ГКРФ', 'ТКРФ', 'Федеральный закон', 'Письмо Минфина', 'Письмо ФНС', 'Приказ ФНС',
                'Постановление Правительства', 'Судебный документ', 'ВНД', 'Бухгалтерский документ']

            for ctg in list(names):
                if ctg in doc_name:
                    return ctg

        for doc in all_docs:
            doc_type = type_determiner(doc['doc_name'])
            doc['doc_type'] = doc_type

        return all_docs


    def load_model(self):
        if hf_token and hf_model_name:
            self.tokenizer = AutoTokenizer.from_pretrained(hf_model_name, use_auth_token=hf_token)
            self.model = AutoModel.from_pretrained(hf_model_name, use_auth_token=hf_token).to(self.device)
        else:
            self.tokenizer = AutoTokenizer.from_pretrained(global_model_path)
            self.model = AutoModel.from_pretrained(global_model_path).to(self.device)

        self.max_len = self.tokenizer.max_len_single_sentence
        self.embedding_dim = self.model.config.hidden_size


    def load_data(self):

        with open(dict_path, "rb") as f:
            self.terms_dict = pickle.load(f)

        with open(companies_map_path, "r", encoding='utf-8') as f:
            self.companies_map = json.load(f)

        with open(general_nmd_path, "r", encoding='utf-8') as f:
            self.general_nmd = json.load(f)

        with open(explanations_for_llm_path, "r", encoding='utf-8') as f:
            self.explanations_for_llm = json.load(f)

        with open(rules_list_path, 'r', encoding='utf-8') as f:
            self.rules_list = f.read().splitlines()

        self.all_docs_info = dataset.load_from_disk(data_path_consult).to_list()  # ONLY EXTERNAL DOCS

        self.internal_docs = dataset.load_from_disk(internal_docs_data_path).to_list()

        self.accounting_docs = dataset.load_from_disk(accounting_data_path).to_list()
        self.spec_internal_docs = dataset.load_from_disk(spec_internal_docs_data_path).to_list()

        self.all_docs_with_accounting = self.all_docs_info + self.accounting_docs
        self.all_docs_with_accounting = self.get_types_of_docs(self.all_docs_with_accounting)

        self.type_weights_nu = {'НКРФ': 1,
                                 'ТКРФ': 1,
                                 'ГКРФ': 1,
                                 'Письмо Минфина': 0.9,
                                 'Письмо ФНС': 0.6,
                                 'Приказ ФНС': 1,
                                 'Постановление Правительства': 1,
                                 'Федеральный закон': 0.9,
                                 'Судебный документ': 0.2,
                                 'ВНД': 0.2,
                                 'Бухгалтерский документ': 0.7,
                                 'Закон Красноярского края': 1.2,
                                 'Правила заполнения': 1.2,
                                 'Правила ведения': 1.2}

        self.all_consultations = dataset.load_from_disk(consultations_dataset_path).to_list()
        self.all_explanations = dataset.load_from_disk(explanations_dataset_path).to_list()

    @staticmethod
    def remove_duplicate_paragraphs(paragraphs):
        unique_paragraphs = []
        seen = set()
        for paragraph in paragraphs:
            stripped_paragraph = paragraph.strip()
            if stripped_paragraph and stripped_paragraph not in seen:
                unique_paragraphs.append(paragraph)
                seen.add(stripped_paragraph)
        return '\n'.join(unique_paragraphs)

    @staticmethod
    def construct_base(idx_list, base):
        concatenated_text = ""
        seen_ids = set()
        pattern = re.compile(r'_(\d{1,3})')

        def find_overlap(a: str, b: str) -> int:
            max_overlap = min(len(a), len(b))
            for i in range(max_overlap, 0, -1):
                if a[-i:] == b[:i]:
                    return i
            return 0

        def add_ellipsis(text: str) -> str:
            if not text:
                return text
            segments = text.split('\n\n')
            processed_segments = []
            for segment in segments:
                if segment and not (
                        segment[0].isupper() or segment[0].isdigit() or segment[0] in ['•', '-', '—', '.']):
                    segment = '...' + segment
                if segment and not (segment.endswith('.') or segment.endswith(';')):
                    segment += '...'
                processed_segments.append(segment)
            return '\n\n'.join(processed_segments)

        for current_index in idx_list:
            if current_index in seen_ids:
                continue

            start_index = max(0, current_index - 2)
            end_index = min(len(base), current_index + 3)

            current_name_base = pattern.sub('', base[current_index]['doc_name'])
            current_doc_text = base[current_index]['doc_text']

            texts_to_concatenate = [current_doc_text]

            for i in range(current_index - 1, start_index - 1, -1):
                if i in seen_ids:
                    continue
                surrounding_name_base = pattern.sub('', base[i]['doc_name'])
                if current_name_base != surrounding_name_base:
                    break
                surrounding_text = base[i]['doc_text']
                overlap_length = find_overlap(surrounding_text, texts_to_concatenate[0])
                if overlap_length == 0:
                    break
                new_text = surrounding_text + texts_to_concatenate[0][overlap_length:]
                texts_to_concatenate[0] = new_text
                seen_ids.add(i)

            for i in range(current_index + 1, end_index):
                if i in seen_ids:
                    continue
                surrounding_name_base = pattern.sub('', base[i]['doc_name'])
                if current_name_base != surrounding_name_base:
                    break
                surrounding_text = base[i]['doc_text']
                overlap_length = find_overlap(texts_to_concatenate[-1], surrounding_text)
                if overlap_length == 0:
                    break

                new_text = texts_to_concatenate[-1] + surrounding_text[overlap_length:]
                texts_to_concatenate[-1] = new_text
                seen_ids.add(i)

            combined_text = ' '.join(texts_to_concatenate)
            concatenated_text += combined_text + '\n\n'

            seen_ids.add(current_index)

        concatenated_text = add_ellipsis(concatenated_text)

        return concatenated_text.rstrip('\n')

    def search_results_multiply_weights(self,
                                        pred: list[str] = None,
                                        scores: list[float] = None,
                                        indexes: list[int] = None,
                                        docs_embeddings: list = None) -> tuple[list[str], list[float], list[int], list]:
        if pred is None or scores is None or indexes is None or docs_embeddings is None:
            return [], [], [], []

        weights = self.type_weights_nu

        weighted_scores = [(weights.get(ctg, 0) * score, prediction, idx, emb)
                           for prediction, score, idx, emb in zip(pred, scores, indexes, docs_embeddings)
                           for ctg in weights if ctg in prediction]

        weighted_scores.sort(reverse=True, key=lambda x: x[0])

        if weighted_scores:
            sorted_scores, sorted_preds, sorted_indexes, sorted_docs_embeddings = zip(*weighted_scores)
        else:
            sorted_scores, sorted_preds, sorted_indexes, sorted_docs_embeddings = [], [], [], []

        return list(sorted_preds), list(sorted_scores), list(sorted_indexes), list(sorted_docs_embeddings)


    def get_uniq_relevant_docs(self,
            top_k: int,
            query_refs_all: list[str],
            scores: list[float],
            indexes: list[int],
            docs_embeddings: list[list[float]]
    ) -> tuple[dict[str, list[str]], dict[str, list[float]], dict[str, list[int]], dict[str, list[list[float]]]]:

        regex = r'_\d{1,3}'

        base_ref_dict = {}

        for i, ref in enumerate(query_refs_all):
            base_ref = re.sub(regex, '', ref)
            base_ref = base_ref.strip()

            if base_ref not in base_ref_dict:
                if len(base_ref_dict) >= top_k:
                    continue
                base_ref_dict[base_ref] = {
                    'refs': [],
                    'scores': [],
                    'indexes': [],
                    'embeddings': []
                }

            base_ref_dict[base_ref]['refs'].append(ref)
            base_ref_dict[base_ref]['scores'].append(scores[i])
            base_ref_dict[base_ref]['indexes'].append(indexes[i])
            base_ref_dict[base_ref]['embeddings'].append(docs_embeddings[i])

        def get_suffix_number(ref: str):
            match = re.findall(regex, ref)
            if match:
                match = re.findall(regex, ref)[0].replace('_', '')
                return int(match)
            return None

        for base_ref, data in base_ref_dict.items():
            refs = data['refs']
            scores_list = data['scores']
            indexes_list = data['indexes']
            embeddings_list = data['embeddings']

            combined = list(zip(refs, scores_list, indexes_list, embeddings_list))

            def sort_key(item):
                ref = item[0]
                suffix = get_suffix_number(ref)
                return (0 if suffix is None else 1, suffix if suffix is not None else -1)

            combined_sorted = sorted(combined, key=sort_key)

            sorted_refs, sorted_scores, sorted_indexes, sorted_embeddings = zip(*combined_sorted)
            base_ref_dict[base_ref]['refs'] = list(sorted_refs)[:20]
            base_ref_dict[base_ref]['scores'] = list(sorted_scores)[:20]
            base_ref_dict[base_ref]['indexes'] = list(sorted_indexes)[:20]
            base_ref_dict[base_ref]['embeddings'] = list(sorted_embeddings)[:20]

        unique_refs = {k: v['refs'] for k, v in base_ref_dict.items()}
        filtered_scores = {k: v['scores'] for k, v in base_ref_dict.items()}
        filtered_indexes = {k: v['indexes'] for k, v in base_ref_dict.items()}
        filtered_docs_embeddings = {k: v['embeddings'] for k, v in base_ref_dict.items()}

        return unique_refs, filtered_scores, filtered_indexes, filtered_docs_embeddings

    def filter_results(self, pred_internal, scores_internal, indices_internal, docs_embeddings_internal, companies_files):

        filt_pred_internal, filt_scores_internal, \
        filt_indices_internal, filt_docs_embeddings_internal = list(), list(), list(), list()

        def add_data(pred, ind, score, emb):
            filt_pred_internal.append(pred)
            filt_indices_internal.append(ind)
            filt_scores_internal.append(score)
            filt_docs_embeddings_internal.append(emb)

        for pred, score, ind, emb in zip(pred_internal, scores_internal, indices_internal, docs_embeddings_internal):
            if [doc for doc in self.general_nmd if doc in pred]:
                add_data(pred, ind, score, emb)
                continue

            for company in companies_files:
                if company in pred:
                    add_data(pred, ind, score, emb)

        return filt_pred_internal, filt_scores_internal, filt_indices_internal, filt_docs_embeddings_internal

    @staticmethod
    def merge_dictionaries(dicts: list = None):
        merged_dict = {}
        max_length = max(len(d) for d in dicts)

        for i in range(max_length):
            for d in dicts:
                keys = list(d.keys())
                values = list(d.values())
                if i < len(keys):
                    merged_dict[keys[i]] = values[i]
        return merged_dict

    @staticmethod
    def check_specific_key(dictionary, key):
        if key in dictionary and dictionary[key] is True:
            for k, v in dictionary.items():
                if k != key and v is True:
                    return False
            return True
        return False

    @staticmethod
    def remove_duplicates(input_list):
        unique_dict = {}
        for item in input_list:
            unique_dict[item] = None
        return list(unique_dict.keys())

    async def search_engine(self,
               query: str = None,
               use_qe: bool = False,
               categories: dict = None,
               llm_params: LlmParams = None):

        if True in list(categories.values()) and not all(categories.values()):
            self.full_base_search = False
            if self.check_specific_key(categories, 'ВНД'):
                nmd_chunks = 120
                nmd_refs = 45
                extra_chunks = 1
                extra_refs = 1
            elif not categories['ВНД']:
                extra_chunks = 120
                extra_refs = 45
                nmd_chunks = 1
                nmd_refs = 1
            else:
                nmd_chunks = 60
                nmd_refs = 23
                extra_chunks = 60
                extra_refs = 23
        else:
            self.full_base_search = True
            nmd_chunks = 50
            nmd_refs = 15
            extra_chunks = 75
            extra_refs = 30


        # Ответы от ллм для отправки на фронт
        llm_responses = []

        # Токенизация и векторизация запроса
        query_tokens = query_tokenization(query, self.tokenizer)
        query_embeds = query_embed_extraction(query_tokens, self.model, self.do_normalization)

        # Поиск по базе документов внешней
        distances, indices = self.index_all_docs_with_accounting.search(query_embeds, len(self.all_docs_with_accounting))
        pred = [self.all_docs_with_accounting[x]['doc_name'] for x in indices[0]]
        docs_embeddings = [self.all_docs_with_accounting[x]['doc_embedding'] for x in indices[0]]

        preds, scores, indexes, docs_embeddings = pred[:5000], list(distances[0])[:5000], \
                                                  list(indices[0])[:5000], docs_embeddings[:5000]

        if not re.search('[Кк]расноярск', query):
            self.type_weights_nu['Закон Красноярского края'] = 0
        else:
            self.type_weights_nu['Закон Красноярского края'] = 1.2


        if not use_rules(query, self.rules_list):
            self.type_weights_nu['Правила ведения'] = 0
            self.type_weights_nu['Правила заполнения'] = 0
        else:
            self.type_weights_nu['Правила ведения'] = 1.2
            self.type_weights_nu['Правила заполнения'] = 1.2

        preds, scores, indexes, docs_embeddings = pred[:5000], list(distances[0])[:5000], \
                                                  list(indices[0])[:5000], docs_embeddings[:5000]

        # Поиск по базе документов внутренних
        if self.full_base_search or categories['ВНД']:
            distances_internal, indices_internal = self.index_internal_docs.search(query_embeds, len(self.spec_internal_docs))
            pred_internal = [self.spec_internal_docs[x]['doc_name'] for x in indices_internal[0]]
            docs_embeddings_internal = [self.spec_internal_docs[x]['doc_embedding'] for x in indices_internal[0]]
            indices_internal = indices_internal[0]

            scores_internal = []
            for title, score in zip(pred_internal, distances_internal[0]):
                if 'КУП' in title:
                    scores_internal.append(score*1.2)
                else:
                    scores_internal.append(score)

            companies_files = search_company.find_nmd_docs(query, self.companies_map)
            pred_internal, scores_internal, indices_internal, docs_embeddings_internal = self.filter_results(pred_internal,
                                                                                                             scores_internal,
                                                                                                             indices_internal,
                                                                                                             docs_embeddings_internal,
                                                                                                             companies_files)


            combined = list(zip(pred_internal, scores_internal, indices_internal, docs_embeddings_internal))
            sorted_combined = sorted(combined, key=lambda x: x[1], reverse=True)
            top_nmd = sorted_combined[:nmd_chunks]

            if 'ЕГДС' in query:
                if not [x for x in top_nmd if 'п.5. Положение о КУП_262 (ВНД)' in x]:
                    ch262 = self.internal_docs[22976]
                    ch262 = (ch262['doc_name'], 1.0, 22976, ch262['chunks_embeddings'][0])
                    top_nmd.insert(0, ch262)
                if not [x for x in top_nmd if 'п.5. Положение о КУП_130 (ВНД)' in x]:
                    ch130 = self.internal_docs[22844]
                    ch130 = (ch130['doc_name'], 1.0, 22844, ch130['chunks_embeddings'][0])
                    top_nmd.insert(1, ch130)

            top_nmd = top_nmd[:nmd_chunks]
            preds_internal, scores_internal, indexes_internal, internal_docs_embeddings = zip(*top_nmd)
            preds_internal, scores_internal, indexes_internal, internal_docs_embeddings = list(preds_internal), \
                                                                                          list(scores_internal), \
                                                                                          list(indexes_internal), \
                                                                                          list(internal_docs_embeddings)

            # Сбор уникальных внутренних документов
            unique_preds_internal, unique_scores_internal, unique_indexes_internal, \
            unique_docs_embeddings_internal = self.get_uniq_relevant_docs(
                                                top_k=nmd_refs,
                                                query_refs_all=preds_internal,
                                                scores=scores_internal,
                                                indexes=indexes_internal,
                                                docs_embeddings=internal_docs_embeddings)

            preds_internal, scores_internal, \
            indexes_internal, internal_docs_embeddings = unique_preds_internal, unique_scores_internal,\
                                                         unique_indexes_internal, unique_docs_embeddings_internal

        # Фильтрация или не фильтрация по категориям по наличию отметок в чек-боксах
        if not self.full_base_search:
            preds, scores, indexes, docs_embeddings = self.filter_by_types(preds, scores, indexes,
                                                                           docs_embeddings, categories)


        # Использование весов поверх скоров
        sorted_preds, sorted_scores, sorted_indexes, sorted_docs_embeddings = self.search_results_multiply_weights(
            pred=preds,
            scores=scores,
            indexes=indexes,
            docs_embeddings=docs_embeddings)

        sorted_preds, sorted_scores, sorted_indexes, sorted_docs_embeddings = sorted_preds[:extra_chunks], \
                                                                              sorted_scores[:extra_chunks], \
                                                                              sorted_indexes[:extra_chunks], \
                                                                              sorted_docs_embeddings[:extra_chunks]

        # Сбор уникальных документов внешних
        unique_preds, unique_scores, unique_indexes, unique_docs_embeddings = self.get_uniq_relevant_docs(
            top_k=extra_refs,
            query_refs_all=sorted_preds,
            scores=sorted_scores,
            indexes=sorted_indexes,
            docs_embeddings=sorted_docs_embeddings
        )

        preds, scores, indexes, docs_embeddings = unique_preds, unique_scores, unique_indexes, unique_docs_embeddings

        if use_qe:

            try:
                prompt = LLM_PROMPT_KEYS.format(query=query)
                if llm_params is None:
                    keyword_query = self.get_main_info_with_llm(prompt)
                else:
                    llm_api = LlmApi(llm_params)
                    keyword_query = await llm_api.predict(prompt)

                llm_responses.append(keyword_query)

                keyword_query = re.sub(r'\[1\].*?(?=\[\d+\]|$)', '', keyword_query, flags=re.DOTALL).replace(' [2]', '').replace('[3]', '').strip()
                keyword_query_tokens = query_tokenization(keyword_query, self.tokenizer)
                keyword_query_embeds = query_embed_extraction(keyword_query_tokens,
                                                              self.model,
                                                              self.do_normalization)

                keyword_distances, keyword_indices = self.index_all_docs_with_accounting.search(
                    keyword_query_embeds, len(self.all_docs_with_accounting))

                keyword_pred = [self.all_docs_with_accounting[x]['doc_name'] for x in keyword_indices[0]]
                keyword_docs_embeddings = [self.all_docs_with_accounting[x]['doc_embedding'] for x in
                                           keyword_indices[0]]

                if not self.full_base_search:
                    keyword_preds, keyword_scores, \
                    keyword_indexes, keyword_docs_embeddings = self.filter_by_types(keyword_pred,
                                                                                    keyword_distances[0],
                                                                                    keyword_indices[0],
                                                                                   keyword_docs_embeddings,
                                                                                    categories)
                else:
                    keyword_preds, keyword_scores, \
                    keyword_indexes, keyword_docs_embeddings = keyword_pred, keyword_distances[0], \
                                                               keyword_indices[0],keyword_docs_embeddings

                keyword_preds, keyword_scores, \
                keyword_indexes, keyword_docs_embeddings = self.search_results_multiply_weights(
                                                pred=keyword_preds, scores=keyword_scores,
                                                indexes=keyword_indexes, docs_embeddings=keyword_docs_embeddings)

                keyword_unique_preds, keyword_unique_scores, \
                keyword_unique_indexes, keyword_unique_docs_embeddings = self.get_uniq_relevant_docs(
                                                                            top_k=45,
                                                                            query_refs_all=keyword_preds,
                                                                            scores=keyword_scores,
                                                                            indexes=keyword_indexes,
                                                                            docs_embeddings=keyword_docs_embeddings)

                preds = dict(list(self.merge_dictionaries([preds, keyword_unique_preds]).items())[:30])
                scores = dict(list(self.merge_dictionaries([scores, keyword_unique_scores]).items())[:30])
                indexes = dict(list(self.merge_dictionaries([indexes, keyword_unique_indexes]).items())[:30])

            except:
                traceback.print_exc()
                print(f"Error applying keys (possibly the LLM is not available)")

        if self.full_base_search or categories['ВНД']:
            # Внесение внутренних топ-10 документов в выдачу
            if self.full_base_search or categories['ВНД']:
                preds = self.merge_dictionaries([preds, preds_internal])
                scores = self.merge_dictionaries([scores, scores_internal])
                indexes = self.merge_dictionaries([indexes, indexes_internal])

        # Красивая сборка чанков для LLM
        texts_for_llm, docs, teasers = [], [], []
        for key, idx_list in indexes.items():
            collected_text = []

            if 'ВНД' in key:
                base = self.internal_docs
            else:
                base = self.all_docs_with_accounting

            if re.search('Минфин|Бухгалтерский документ|ФНС|Судебный документ|Постановление Правительства|Федеральный закон', key):
                text = self.construct_base(idx_list, base)
                collected_text.append(text)

            else:
                for idx in idx_list:
                    if idx < len(base):
                        for text in base[idx]['doc_text'].split('\n'):
                            collected_text.append(text)

            collected_text = self.remove_duplicate_paragraphs(collected_text)
            texts_for_llm.append(collected_text)

        # Поиск релевантных консультаций
        distances_consult, indices_consult = self.index_consult.search(query_embeds, len(self.all_consultations))
        predicted_consultations = {self.all_consultations[x]['doc_name']: self.all_consultations[x]['doc_text']
                                   for x in indices_consult[0]}

        # Поиск релевантных разъяснений
        distances_explanations, indices_explanations = self.index_explanations.search(query_embeds, len(self.all_explanations))
        predicted_explanations = {self.all_explanations[x]['doc_name']: self.all_explanations[x]['doc_text']
                                   for x in indices_explanations[0]}
        results = list(zip(list(predicted_explanations.keys()),
                           list(predicted_explanations.values()),
                           distances_explanations[0]))

        explanation_titles = self.rerank_by_avg_score(results)[:3]

        try:
            predicted_explanation = {explanation_title: self.explanations_for_llm[explanation_title] for explanation_title in explanation_titles}
        except:
            predicted_explanation = {}
            print('The relevant document was not found in the system.')

        return query, [x.replace('ФЕДЕРАЛЬНЫЙ СТАНДАРТ БУХГАЛТЕРСКОГО УЧЕТА', 'Федеральный стандарт бухгалтерского учета ФСБУ') for x in list(preds.keys())], texts_for_llm, dict(list(predicted_consultations.items())[:def_k]), \
               predicted_explanation, llm_responses

    async def olympic_branch(self, 
                       query: str = None, 
                       sources: dict = None, 
                       categories: dict = None,
                       llm_params: LlmParams = None):

        # Собираем все ответы ллм для отправки на фронт
        llm_responses = []
        
        text = await self.olymp_think(query, sources, llm_params)
        llm_responses.append(text)
        
        saved_sources = {}
        saved_step_by_step = []

        comment1, sources_choice = self.parse_step(text)

        sources_choice = [source - 1 for source in sources_choice]
        for idx, ref in enumerate(sources):
            if idx in sources_choice and ref not in saved_sources.keys():
                saved_sources.update({ref: sources[ref]})

        should_continue = True
        if comment1 == '':
            count = 4
        count = 0

        while count < 4:

            query, preds, \
            texts_for_llm, predicted_consultations, \
            predicted_explanation, skip_llm_responses = await self.search_engine(query, use_qe=False, categories=categories)

            sources = dict(map(lambda i,j: (i,j), preds, texts_for_llm))
            sources = dict(islice(sources.items(), 20))
            text = await self.olymp_think(query, sources, llm_params)
            llm_responses.append(text)
            
            comment2, sources_choice = self.parse_step(text)

            sources_choice = [source - 1 for source in sources_choice]
            saved_step_by_step.append(sources_choice)

            for idx, ref in enumerate(sources):

                if idx in sources_choice and ref not in saved_sources.keys():
                    saved_sources.update({ref: sources[ref]})

            if comment2 == '':
                break

            comment1 = comment2
            count += 1

        return saved_sources, saved_step_by_step, llm_responses

    async def search(self,
               query: str = None,
               use_qe: bool = False,
               use_olympic: bool = False,
               categories: dict = None,
               llm_params: LlmParams = None):

        # Преобразование запроса
        lem_dict = self.lemmatize_dict(self.terms_dict)
        lem_dict_fast, lem_dict_slow = self.separate_one_word_searchable_dict(lem_dict)
        query_for_llm, _ = self.substitute_definitions(query, lem_dict, lem_dict_fast, lem_dict_slow, for_llm=True)
        query, _ = self.substitute_definitions(query, lem_dict, lem_dict_fast, lem_dict_slow, for_llm=False)

        # Базовый поиск
        query, base_preds, base_texts_for_llm, \
        predicted_consultations, predicted_explanation, llm_responses = await self.search_engine(query, use_qe, categories, llm_params)

        if use_olympic:
            sources = dict(map(lambda i,j: (i,j), base_preds, base_texts_for_llm))
            sources = dict(islice(sources.items(), 20))
            olymp_results, olymp_step_by_step, llm_responses = await self.olympic_branch(query, sources, categories, llm_params)
            olymp_preds, olymp_texts_for_llm = list(olymp_results.keys()), list(olymp_results.values())

            if len(olymp_preds) <= 45:
                preds = olymp_preds + base_preds
                preds = self.remove_duplicates(preds)[:45]
                texts_for_llm = olymp_texts_for_llm + base_texts_for_llm
                texts_for_llm = self.remove_duplicates(texts_for_llm)[:45]
                return query_for_llm, preds, texts_for_llm, predicted_consultations, predicted_explanation, llm_responses

            else:
                olymp_results = self.merge_dictionaries(olymp_step_by_step)[:45]
                preds, texts_for_llm = list(olymp_results.keys()), list(olymp_results.values())

                return query_for_llm, preds, texts_for_llm, predicted_consultations, predicted_explanation, llm_responses

        else:
            return query_for_llm, base_preds, base_texts_for_llm, predicted_consultations, predicted_explanation, llm_responses