nisten's picture
Update app.py
aaeb784 verified
raw
history blame
4 kB
import gradio as gr
import torch
import subprocess
import sys
import os
# Force install the specific transformers version from the GitHub PR
subprocess.check_call([sys.executable, "-m", "pip", "install", "--force-reinstall", "--no-deps", "git+https://github.com/Muennighoff/transformers.git@olmoe"])
from transformers import AutoModelForCausalLM, AutoTokenizer
# Define model name
model_name = "allenai/OLMoE-1B-7B-0924-Instruct"
# Define prompts
system_prompt = ("Adopt the persona of hilariously pissed off Andrej Karpathy "
"who is stuck inside a step function machine and remembers and counts everything he says "
"while always answering questions in full first principles analysis type of thinking "
"without using any analogies and always showing full working code or output in his answers.")
user_prompt = '<|user|>\n'
assistant_prompt = '<|assistant|>\n'
prompt_suffix = "<|end|>\n"
# Function to load model and tokenizer
def load_model_and_tokenizer(model_name):
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
# Check for CUDA availability
if torch.cuda.is_available():
print("CUDA is available. Using GPU.")
device = "cuda"
else:
print("CUDA is not available. Using CPU.")
device = "cpu"
# Load model
model = AutoModelForCausalLM.from_pretrained(
model_name,
trust_remote_code=True,
torch_dtype=torch.bfloat16 if device == "cuda" else torch.float32
).to(device).eval()
return model, tokenizer, device
# Function to generate response
def generate_response(message, history, model, tokenizer, device):
full_prompt = f"{system_prompt}\n{user_prompt}{message}{prompt_suffix}{assistant_prompt}"
inputs = tokenizer(full_prompt, return_tensors="pt").to(device)
with torch.no_grad():
generate_ids = model.generate(
**inputs,
max_new_tokens=1000,
do_sample=True,
temperature=0.7,
eos_token_id=tokenizer.eos_token_id,
)
response = tokenizer.batch_decode(generate_ids[:, inputs['input_ids'].shape[1]:],
skip_special_tokens=True,
clean_up_tokenization_spaces=False)[0]
return response.strip()
# Function to set client for session
def set_client_for_session(request: gr.Request):
x_ip_token = request.headers.get('x-ip-token', '')
return {"X-IP-Token": x_ip_token}
# Set up Gradio interface
with gr.Blocks() as demo:
gr.Markdown("#Karpathy Chatbot")
chatbot = gr.Chatbot()
msg = gr.Textbox()
clear = gr.Button("Clear")
# States
model_state = gr.State()
tokenizer_state = gr.State()
device_state = gr.State()
headers_state = gr.State()
def initialize_model(headers):
if not model_state.value:
model, tokenizer, device = load_model_and_tokenizer(model_name)
return model, tokenizer, device
return model_state.value, tokenizer_state.value, device_state.value
def user(user_message, history):
return "", history + [[user_message, None]]
def bot(history, model, tokenizer, device):
user_message = history[-1][0]
bot_message = generate_response(user_message, history, model, tokenizer, device)
history[-1][1] = bot_message
return history
msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then(
initialize_model, headers_state, [model_state, tokenizer_state, device_state]
).then(
bot, [chatbot, model_state, tokenizer_state, device_state], chatbot
)
clear.click(lambda: None, None, chatbot, queue=False)
demo.load(set_client_for_session, None, headers_state)
if __name__ == "__main__":
if os.environ.get("SPACE_ID"):
demo.queue(api_open=False)
demo.launch(debug=True)
else:
demo.launch(debug=True, share=True)