Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Update documentation of the app.py
#593
by
louisbrulenaudet
- opened
app.py
CHANGED
@@ -42,10 +42,76 @@ from src.tools.plots import (
|
|
42 |
#enable_space_ci()
|
43 |
|
44 |
def restart_space():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
API.restart_space(repo_id=REPO_ID, token=H4_TOKEN)
|
46 |
|
47 |
|
48 |
def init_space():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
try:
|
50 |
print(EVAL_REQUESTS_PATH)
|
51 |
snapshot_download(
|
@@ -102,6 +168,51 @@ def update_table(
|
|
102 |
hide_models: list,
|
103 |
query: str,
|
104 |
):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
filtered_df = filter_models(df=hidden_df, type_query=type_query, size_query=size_query, precision_query=precision_query, hide_models=hide_models)
|
106 |
filtered_df = filter_queries(query, filtered_df)
|
107 |
df = select_columns(filtered_df, columns)
|
@@ -109,15 +220,83 @@ def update_table(
|
|
109 |
|
110 |
|
111 |
def load_query(request: gr.Request): # triggered only once at startup => read query parameter if it exists
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
query = request.query_params.get("query") or ""
|
113 |
return query, query # return one for the "search_bar", one for a hidden component that triggers a reload only if value has changed
|
114 |
|
115 |
|
116 |
def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
return df[(df[AutoEvalColumn.dummy.name].str.contains(query, case=False))]
|
118 |
|
119 |
|
120 |
def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
always_here_cols = [c.name for c in fields(AutoEvalColumn) if c.never_hidden]
|
122 |
dummy_col = [AutoEvalColumn.dummy.name]
|
123 |
#AutoEvalColumn.model_type_symbol.name,
|
@@ -131,6 +310,31 @@ def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
|
|
131 |
|
132 |
def filter_queries(query: str, filtered_df: pd.DataFrame):
|
133 |
"""Added by Abishek"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
134 |
final_df = []
|
135 |
if query != "":
|
136 |
queries = [q.strip() for q in query.split(";")]
|
@@ -152,6 +356,43 @@ def filter_queries(query: str, filtered_df: pd.DataFrame):
|
|
152 |
def filter_models(
|
153 |
df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, hide_models: list
|
154 |
) -> pd.DataFrame:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
155 |
# Show all models
|
156 |
if "Private or deleted" in hide_models:
|
157 |
filtered_df = df[df[AutoEvalColumn.still_on_hub.name] == True]
|
|
|
42 |
#enable_space_ci()
|
43 |
|
44 |
def restart_space():
|
45 |
+
"""
|
46 |
+
Restarts a Space instance specified by its repository ID.
|
47 |
+
|
48 |
+
This function is used to restart a Space instance within the Hugging Face platform.
|
49 |
+
It requires the repository ID and a valid API token for authentication.
|
50 |
+
|
51 |
+
Parameters as env variables
|
52 |
+
---------------------------
|
53 |
+
repo_id : str
|
54 |
+
The ID of the repository associated with the Space instance to be restarted.
|
55 |
+
|
56 |
+
token : str
|
57 |
+
A valid API token with the necessary permissions to restart the Space.
|
58 |
+
|
59 |
+
Returns
|
60 |
+
-------
|
61 |
+
None
|
62 |
+
This function does not return any value. It simply restarts the specified Space instance.
|
63 |
+
|
64 |
+
Example
|
65 |
+
-------
|
66 |
+
>>> restart_space(repo_id="example_repo_id", token="example_token")
|
67 |
+
"""
|
68 |
API.restart_space(repo_id=REPO_ID, token=H4_TOKEN)
|
69 |
|
70 |
|
71 |
def init_space():
|
72 |
+
"""
|
73 |
+
Initializes the Hugging Face Space environment.
|
74 |
+
|
75 |
+
This function initializes the Hugging Face Space environment by performing the following steps:
|
76 |
+
1. Downloads evaluation requests, dynamic information, and evaluation results.
|
77 |
+
2. Processes the raw data into a leaderboard DataFrame.
|
78 |
+
3. Updates collections with the original DataFrame.
|
79 |
+
4. Creates a plot DataFrame for visualization.
|
80 |
+
5. Retrieves evaluation queue DataFrames.
|
81 |
+
|
82 |
+
Returns
|
83 |
+
-------
|
84 |
+
tuple
|
85 |
+
A tuple containing the following elements:
|
86 |
+
- leaderboard_df : pandas.DataFrame
|
87 |
+
DataFrame containing the leaderboard data.
|
88 |
+
|
89 |
+
- original_df : pandas.DataFrame
|
90 |
+
Original DataFrame obtained from the evaluation results.
|
91 |
+
|
92 |
+
- plot_df : pandas.DataFrame
|
93 |
+
DataFrame suitable for creating plots.
|
94 |
+
|
95 |
+
- finished_eval_queue_df : pandas.DataFrame
|
96 |
+
DataFrame containing finished evaluation queue data.
|
97 |
+
|
98 |
+
- running_eval_queue_df : pandas.DataFrame
|
99 |
+
DataFrame containing running evaluation queue data.
|
100 |
+
|
101 |
+
- pending_eval_queue_df : pandas.DataFrame
|
102 |
+
DataFrame containing pending evaluation queue data.
|
103 |
+
|
104 |
+
Example
|
105 |
+
-------
|
106 |
+
>>> (
|
107 |
+
... leaderboard_df,
|
108 |
+
... original_df,
|
109 |
+
... plot_df,
|
110 |
+
... finished_eval_queue_df,
|
111 |
+
... running_eval_queue_df,
|
112 |
+
... pending_eval_queue_df,
|
113 |
+
... ) = init_space()
|
114 |
+
"""
|
115 |
try:
|
116 |
print(EVAL_REQUESTS_PATH)
|
117 |
snapshot_download(
|
|
|
168 |
hide_models: list,
|
169 |
query: str,
|
170 |
):
|
171 |
+
"""
|
172 |
+
Updates a table DataFrame based on specified criteria.
|
173 |
+
|
174 |
+
This function filters the input DataFrame based on specified criteria and returns a new DataFrame with selected columns.
|
175 |
+
|
176 |
+
Parameters
|
177 |
+
----------
|
178 |
+
hidden_df : pandas.DataFrame
|
179 |
+
The DataFrame to be filtered and updated.
|
180 |
+
|
181 |
+
columns : list
|
182 |
+
List of column names to be included in the updated DataFrame.
|
183 |
+
|
184 |
+
type_query : list
|
185 |
+
List of types to filter models.
|
186 |
+
|
187 |
+
precision_query : str
|
188 |
+
Precision value to filter models.
|
189 |
+
|
190 |
+
size_query : list
|
191 |
+
List of sizes to filter models.
|
192 |
+
|
193 |
+
hide_models : list
|
194 |
+
List of models to be hidden.
|
195 |
+
|
196 |
+
query : str
|
197 |
+
Query string to filter rows in the DataFrame.
|
198 |
+
|
199 |
+
Returns
|
200 |
+
-------
|
201 |
+
updated_df : pandas.DataFrame
|
202 |
+
A DataFrame containing filtered and updated data based on the specified criteria.
|
203 |
+
|
204 |
+
Example
|
205 |
+
-------
|
206 |
+
>>> updated_df = update_table(
|
207 |
+
... hidden_df=original_df,
|
208 |
+
... columns=["Model", "Type", "Precision"],
|
209 |
+
... type_query=["type1", "type2"],
|
210 |
+
... precision_query="high",
|
211 |
+
... size_query=["large"],
|
212 |
+
... hide_models=["model1", "model2"],
|
213 |
+
... query="column1 > 0 and column2 == 'value'",
|
214 |
+
... )
|
215 |
+
"""
|
216 |
filtered_df = filter_models(df=hidden_df, type_query=type_query, size_query=size_query, precision_query=precision_query, hide_models=hide_models)
|
217 |
filtered_df = filter_queries(query, filtered_df)
|
218 |
df = select_columns(filtered_df, columns)
|
|
|
220 |
|
221 |
|
222 |
def load_query(request: gr.Request): # triggered only once at startup => read query parameter if it exists
|
223 |
+
"""
|
224 |
+
Loads a query parameter from a request object.
|
225 |
+
|
226 |
+
It returns the query parameter value for the "search_bar" component and for a hidden component that triggers a reload only if the value has changed.
|
227 |
+
|
228 |
+
Parameters
|
229 |
+
----------
|
230 |
+
request : gr.Request
|
231 |
+
The request object containing query parameters.
|
232 |
+
|
233 |
+
Returns
|
234 |
+
-------
|
235 |
+
tuple
|
236 |
+
A tuple containing two identical query parameter values:
|
237 |
+
- query_search_bar : str
|
238 |
+
The query parameter value for the "search_bar" component.
|
239 |
+
|
240 |
+
- query_hidden : str
|
241 |
+
The query parameter value for a hidden component that triggers a reload only if the value has changed.
|
242 |
+
|
243 |
+
Example
|
244 |
+
-------
|
245 |
+
>>> query_search_bar, query_hidden = load_query(request)
|
246 |
+
"""
|
247 |
query = request.query_params.get("query") or ""
|
248 |
return query, query # return one for the "search_bar", one for a hidden component that triggers a reload only if value has changed
|
249 |
|
250 |
|
251 |
def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
|
252 |
+
"""
|
253 |
+
Searches a DataFrame for rows containing a specified query.
|
254 |
+
|
255 |
+
This function filters the input DataFrame based on a specified query and returns a new DataFrame containing rows where the query matches any part of the specified column.
|
256 |
+
|
257 |
+
Parameters
|
258 |
+
----------
|
259 |
+
df : pandas.DataFrame
|
260 |
+
The DataFrame to be searched.
|
261 |
+
|
262 |
+
query : str
|
263 |
+
The query string to search for within the DataFrame.
|
264 |
+
|
265 |
+
Returns
|
266 |
+
-------
|
267 |
+
filtered_df : pandas.DataFrame
|
268 |
+
A DataFrame containing rows where the query matches any part of the specified column.
|
269 |
+
|
270 |
+
Example
|
271 |
+
-------
|
272 |
+
>>> filtered_df = search_table(df=original_df, query="example_query")
|
273 |
+
"""
|
274 |
return df[(df[AutoEvalColumn.dummy.name].str.contains(query, case=False))]
|
275 |
|
276 |
|
277 |
def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
|
278 |
+
"""
|
279 |
+
Selects specified columns from a DataFrame.
|
280 |
+
|
281 |
+
This function selects specified columns from the input DataFrame and returns a new DataFrame containing only those columns.
|
282 |
+
|
283 |
+
Parameters
|
284 |
+
----------
|
285 |
+
df : pandas.DataFrame
|
286 |
+
The DataFrame from which columns are to be selected.
|
287 |
+
|
288 |
+
columns : list
|
289 |
+
List of column names to be selected from the DataFrame.
|
290 |
+
|
291 |
+
Returns
|
292 |
+
-------
|
293 |
+
filtered_df : pandas.DataFrame
|
294 |
+
A DataFrame containing only the specified columns.
|
295 |
+
|
296 |
+
Example
|
297 |
+
-------
|
298 |
+
>>> filtered_df = select_columns(df=original_df, columns=["column1", "column2", "column3"])
|
299 |
+
"""
|
300 |
always_here_cols = [c.name for c in fields(AutoEvalColumn) if c.never_hidden]
|
301 |
dummy_col = [AutoEvalColumn.dummy.name]
|
302 |
#AutoEvalColumn.model_type_symbol.name,
|
|
|
310 |
|
311 |
def filter_queries(query: str, filtered_df: pd.DataFrame):
|
312 |
"""Added by Abishek"""
|
313 |
+
"""
|
314 |
+
Filters DataFrame rows based on specified query strings.
|
315 |
+
|
316 |
+
This function filters the input DataFrame based on specified query strings and returns a new DataFrame containing rows that match any of the queries.
|
317 |
+
|
318 |
+
Parameters
|
319 |
+
----------
|
320 |
+
query : str
|
321 |
+
The query string containing one or more search queries separated by semicolons (;).
|
322 |
+
|
323 |
+
filtered_df : pandas.DataFrame
|
324 |
+
The DataFrame to be filtered based on the queries.
|
325 |
+
|
326 |
+
Returns
|
327 |
+
-------
|
328 |
+
filtered_df : pandas.DataFrame
|
329 |
+
A DataFrame containing rows that match any of the specified queries.
|
330 |
+
|
331 |
+
Example
|
332 |
+
-------
|
333 |
+
>>> filtered_df = filter_queries(
|
334 |
+
... query="query1; query2; query3",
|
335 |
+
... filtered_df=original_df,
|
336 |
+
... )
|
337 |
+
"""
|
338 |
final_df = []
|
339 |
if query != "":
|
340 |
queries = [q.strip() for q in query.split(";")]
|
|
|
356 |
def filter_models(
|
357 |
df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, hide_models: list
|
358 |
) -> pd.DataFrame:
|
359 |
+
"""
|
360 |
+
Filters DataFrame rows based on specified criteria.
|
361 |
+
|
362 |
+
This function filters the input DataFrame based on specified criteria such as model type, size, precision, and models to hide.
|
363 |
+
|
364 |
+
Parameters
|
365 |
+
----------
|
366 |
+
df : pandas.DataFrame
|
367 |
+
The DataFrame to be filtered.
|
368 |
+
|
369 |
+
type_query : list
|
370 |
+
List of tuples containing model types to include in the filtering. Each tuple consists of a model type abbreviation and its corresponding emoji.
|
371 |
+
|
372 |
+
size_query : list
|
373 |
+
List of size categories to include in the filtering.
|
374 |
+
|
375 |
+
precision_query : list
|
376 |
+
List of precision values to include in the filtering.
|
377 |
+
|
378 |
+
hide_models : list
|
379 |
+
List of model categories to hide from the DataFrame.
|
380 |
+
|
381 |
+
Returns
|
382 |
+
-------
|
383 |
+
filtered_df : pandas.DataFrame
|
384 |
+
A DataFrame containing rows that meet the specified filtering criteria.
|
385 |
+
|
386 |
+
Example
|
387 |
+
-------
|
388 |
+
>>> filtered_df = filter_models(
|
389 |
+
... df=original_df,
|
390 |
+
... type_query=[("Type1", "🔥"), ("Type2", "⭐")],
|
391 |
+
... size_query=["Large", "Medium"],
|
392 |
+
... precision_query=["High", "Medium"],
|
393 |
+
... hide_models=["Private or deleted", "Contains a merge/moerge", "MoE", "Flagged"],
|
394 |
+
... )
|
395 |
+
"""
|
396 |
# Show all models
|
397 |
if "Private or deleted" in hide_models:
|
398 |
filtered_df = df[df[AutoEvalColumn.still_on_hub.name] == True]
|