Spaces:
Paused
Paused
import base64 | |
import json | |
from datetime import datetime | |
import gradio as gr | |
import torch | |
import spaces | |
from PIL import Image, ImageDraw | |
from qwen_vl_utils import process_vision_info | |
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor | |
import ast | |
import os | |
import numpy as np | |
from huggingface_hub import hf_hub_download, list_repo_files | |
# Define constants | |
DESCRIPTION = "[UGround Demo](https://osu-nlp-group.github.io/UGround/)" | |
_SYSTEM = "You are a very helpful assistant." | |
MIN_PIXELS = 256 * 28 * 28 | |
MAX_PIXELS = 1344 * 1344 | |
# Specify the model repository and destination folder | |
# https://huggingface.co/osunlp/UGround-V1-2B | |
model_repo = "osunlp/UGround-V1-2B" | |
destination_folder = "./UGround-V1-2B" | |
# Ensure the destination folder exists | |
os.makedirs(destination_folder, exist_ok=True) | |
# List all files in the repository | |
files = list_repo_files(repo_id=model_repo) | |
# Download each file to the destination folder | |
for file in files: | |
file_path = hf_hub_download(repo_id=model_repo, filename=file, local_dir=destination_folder) | |
print(f"Downloaded {file} to {file_path}") | |
model = Qwen2VLForConditionalGeneration.from_pretrained( | |
destination_folder, | |
torch_dtype=torch.bfloat16, | |
device_map="cpu", | |
) | |
# Load the processor | |
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", min_pixels=MIN_PIXELS, max_pixels=MAX_PIXELS) | |
# Helper functions | |
def draw_point(image_input, point=None, radius=5): | |
"""Draw a point on the image.""" | |
if isinstance(image_input, str): | |
image = Image.open(image_input) | |
else: | |
image = Image.fromarray(np.uint8(image_input)) | |
if point: | |
x, y = round(point[0]/1000 * image.width), round(point[1]/1000 * image.height) | |
ImageDraw.Draw(image).ellipse((x - radius, y - radius, x + radius, y + radius), fill='red') | |
return image | |
def array_to_image_path(image_array, session_id): | |
"""Save the uploaded image and return its path.""" | |
if image_array is None: | |
raise ValueError("No image provided. Please upload an image before submitting.") | |
img = Image.fromarray(np.uint8(image_array)) | |
filename = f"{session_id}.png" | |
img.save(filename) | |
return os.path.abspath(filename) | |
def crop_image(image_path, click_xy, crop_factor=0.5): | |
"""Crop the image around the click point.""" | |
image = Image.open(image_path) | |
width, height = image.size | |
crop_width, crop_height = int(width * crop_factor), int(height * crop_factor) | |
center_x, center_y = int(click_xy[0] * width), int(click_xy[1] * height) | |
left = max(center_x - crop_width // 2, 0) | |
upper = max(center_y - crop_height // 2, 0) | |
right = min(center_x + crop_width // 2, width) | |
lower = min(center_y + crop_height // 2, height) | |
cropped_image = image.crop((left, upper, right, lower)) | |
cropped_image_path = f"cropped_{os.path.basename(image_path)}" | |
cropped_image.save(cropped_image_path) | |
return cropped_image_path | |
def run_showui(image, query, session_id, iterations=1): | |
"""Main function for iterative inference.""" | |
image_path = array_to_image_path(image, session_id) | |
click_xy = None | |
images_during_iterations = [] # List to store images at each step | |
for _ in range(iterations): | |
messages = [ | |
{ | |
"role": "user", | |
"content": [ | |
{"type": "text", "text": "You are a very helpful assistant"}, | |
{"type": "image", "image": image_path, "min_pixels": MIN_PIXELS, "max_pixels": MAX_PIXELS}, | |
{"type": "text", "text": f"""Your task is to help the user identify the precise coordinates (x, y) of a specific area/element/object on the screen based on a description. | |
- Your response should aim to point to the center or a representative point within the described area/element/object as accurately as possible. | |
- If the description is unclear or ambiguous, infer the most relevant area or element based on its likely context or purpose. | |
- Your answer should be a single string (x, y) corresponding to the point of the interest. | |
Description: {query} | |
Answer:"""} | |
], | |
} | |
] | |
global model | |
model = model.to("cuda") | |
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
image_inputs, video_inputs = process_vision_info(messages) | |
inputs = processor( | |
text=[text], | |
images=image_inputs, | |
videos=video_inputs, | |
padding=True, | |
return_tensors="pt" | |
) | |
inputs = inputs.to("cuda") | |
generated_ids = model.generate(**inputs, max_new_tokens=128,temperature=0) | |
generated_ids_trimmed = [ | |
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) | |
] | |
output_text = processor.batch_decode( | |
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False | |
)[0] | |
click_xy = ast.literal_eval(output_text) | |
# Draw point on the current image | |
result_image = draw_point(image_path, click_xy, radius=10) | |
images_during_iterations.append(result_image) # Store the current image | |
# Crop the image for the next iteration | |
image_path = crop_image(image_path, click_xy) | |
return images_during_iterations, str(click_xy) | |
def save_and_upload_data(image, query, session_id, is_example_image, votes=None): | |
"""Save the data to a JSON file and upload to S3.""" | |
if is_example_image == "True": | |
return | |
votes = votes or {"upvotes": 0, "downvotes": 0} | |
# Save image locally | |
image_file_name = f"{session_id}.png" | |
image.save(image_file_name) | |
data = { | |
"image_path": image_file_name, | |
"query": query, | |
"votes": votes, | |
"timestamp": datetime.now().isoformat() | |
} | |
local_file_name = f"{session_id}.json" | |
with open(local_file_name, "w") as f: | |
json.dump(data, f) | |
return data | |
def update_vote(vote_type, session_id, is_example_image): | |
"""Update the vote count and re-upload the JSON file.""" | |
if is_example_image == "True": | |
return "Example image." | |
local_file_name = f"{session_id}.json" | |
with open(local_file_name, "r") as f: | |
data = json.load(f) | |
if vote_type == "upvote": | |
data["votes"]["upvotes"] += 1 | |
elif vote_type == "downvote": | |
data["votes"]["downvotes"] += 1 | |
with open(local_file_name, "w") as f: | |
json.dump(data, f) | |
return f"Thank you for your {vote_type}!" | |
with open("./assets/showui.png", "rb") as image_file: | |
base64_image = base64.b64encode(image_file.read()).decode("utf-8") | |
# [ | |
# [f"{cur_dir}/amazon.jpg",f"Search bar at the top of the page"], | |
# [f"{cur_dir}/shopping.jpg", f"delete button for the second item in the cart list"], | |
# [f"{cur_dir}/ios.jpg", f"Open Maps"], | |
# [f"{cur_dir}/toggle.jpg", f"toggle button labeled by VPN"], | |
# [f"{cur_dir}/semantic.jpg", f"Home"], | |
# [f"{cur_dir}/accweather.jpg", f"Select May"], | |
# [f"{cur_dir}/arxiv.jpg", f"Home"], | |
# [f"{cur_dir}/arxiv.jpg", f"Edit the page"], | |
# [f"{cur_dir}/ios.jpg", f"icon at the top right corner"], | |
# [f"{cur_dir}/health.jpg", f"text labeled by 2023/11/26"], | |
examples = [ | |
["./examples/amazon.jpg", "Search bar at the top of the page", True], | |
["./examples/shopping.jpg", "delete button for the second item in the cart list", True], | |
["./examples/ios.jpg", "Open Maps", True], | |
["./examples/toggle.jpg", "toggle button labeled by VPN", True], | |
["./examples/semantic.jpg", "Home", True], | |
["./examples/accweather.jpg", "Select May", True], | |
["./examples/arxiv.jpg", "Home", True], | |
["./examples/arxiv.jpg", "Edit the page", True], | |
["./examples/ios.jpg", "icon at the top right corner", True], | |
["./examples/health.jpg", "text labeled by 2023/11/26", True], | |
["./examples/app_store.png", "Download Kindle.", True], | |
["./examples/ios_setting.png", "Turn off Do not disturb.", True], | |
# ["./examples/apple_music.png", "Star to favorite.", True], | |
# ["./examples/map.png", "Boston.", True], | |
# ["./examples/wallet.png", "Scan a QR code.", True], | |
# ["./examples/word.png", "More shapes.", True], | |
# ["./examples/web_shopping.png", "Proceed to checkout.", True], | |
# ["./examples/web_forum.png", "Post my comment.", True], | |
# ["./examples/safari_google.png", "Click on search bar.", True], | |
] | |
def build_demo(embed_mode, concurrency_count=1): | |
with gr.Blocks(title="UGround Demo", theme=gr.themes.Default()) as demo: | |
state_image_path = gr.State(value=None) | |
state_session_id = gr.State(value=None) | |
# if not embed_mode: | |
# gr.HTML( | |
# f""" | |
# <div style="text-align: center; margin-bottom: 20px;"> | |
# <div style="display: flex; justify-content: center;"> | |
# <img src="https://raw.githubusercontent.com/showlab/ShowUI/refs/heads/main/assets/showui.jpg" alt="ShowUI" width="320" style="margin-bottom: 10px;"/> | |
# </div> | |
# <p>ShowUI is a lightweight vision-language-action model for GUI agents.</p> | |
# <div style="display: flex; justify-content: center; gap: 15px; font-size: 20px;"> | |
# <a href="https://huggingface.co/showlab/ShowUI-2B" target="_blank"> | |
# <img src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-ShowUI--2B-blue" alt="model"/> | |
# </a> | |
# <a href="https://arxiv.org/abs/2411.17465" target="_blank"> | |
# <img src="https://img.shields.io/badge/arXiv%20paper-2411.17465-b31b1b.svg" alt="arXiv"/> | |
# </a> | |
# <a href="https://github.com/showlab/ShowUI" target="_blank"> | |
# <img src="https://img.shields.io/badge/GitHub-ShowUI-black" alt="GitHub"/> | |
# </a> | |
# </div> | |
# </div> | |
# """ | |
# ) | |
with gr.Row(): | |
with gr.Column(scale=3): | |
imagebox = gr.Image(type="numpy", label="Input Screenshot", placeholder="""#Try UGround with screenshots! | |
Windows: [Win + Shift + S] | |
macOS: [Command + Shift + 3] | |
Then upload/paste from clipboard π€ | |
""") | |
# Add a slider for iteration count | |
iteration_slider = gr.Slider(minimum=1, maximum=3, step=1, value=1, label="Refinement Steps") | |
textbox = gr.Textbox( | |
show_label=True, | |
placeholder="Enter a query (e.g., 'Click Nahant')", | |
label="Query", | |
) | |
submit_btn = gr.Button(value="Submit", variant="primary") | |
# Examples component | |
gr.Examples( | |
examples=[[e[0], e[1]] for e in examples], | |
inputs=[imagebox, textbox], | |
outputs=[textbox], # Only update the query textbox | |
examples_per_page=3, | |
) | |
# Add a hidden dropdown to pass the `is_example` flag | |
is_example_dropdown = gr.Dropdown( | |
choices=["True", "False"], | |
value="False", | |
visible=False, | |
label="Is Example Image", | |
) | |
def set_is_example(query): | |
# Find the example and return its `is_example` flag | |
for _, example_query, is_example in examples: | |
if query.strip() == example_query.strip(): | |
return str(is_example) # Return as string for Dropdown compatibility | |
return "False" | |
textbox.change( | |
set_is_example, | |
inputs=[textbox], | |
outputs=[is_example_dropdown], | |
) | |
with gr.Column(scale=8): | |
output_gallery = gr.Gallery(label="Iterative Refinement", object_fit="contain", preview=True) | |
# output_gallery = gr.Gallery(label="Iterative Refinement") | |
gr.HTML( | |
""" | |
<p><strong>Note:</strong> The <span style="color: red;">red point</span> on the output image represents the predicted clickable coordinates.</p> | |
""" | |
) | |
output_coords = gr.Textbox(label="Final Clickable Coordinates") | |
gr.HTML( | |
""" | |
<p><strong>π€ Good or bad? Rate your experience to help us improve! β¬οΈ</strong></p> | |
""" | |
) | |
with gr.Row(elem_id="action-buttons", equal_height=True): | |
upvote_btn = gr.Button(value="π Looks good!", variant="secondary") | |
downvote_btn = gr.Button(value="π Too bad!", variant="secondary") | |
clear_btn = gr.Button(value="ποΈ Clear", interactive=True) | |
def on_submit(image, query, iterations, is_example_image): | |
if image is None: | |
raise ValueError("No image provided. Please upload an image before submitting.") | |
session_id = datetime.now().strftime("%Y%m%d_%H%M%S") | |
images_during_iterations, click_coords = run_showui(image, query, session_id, iterations) | |
save_and_upload_data(images_during_iterations[0], query, session_id, is_example_image) | |
return images_during_iterations, click_coords, session_id | |
submit_btn.click( | |
on_submit, | |
[imagebox, textbox, iteration_slider, is_example_dropdown], | |
[output_gallery, output_coords, state_session_id], | |
) | |
clear_btn.click( | |
lambda: (None, None, None, None), | |
inputs=None, | |
outputs=[imagebox, textbox, output_gallery, output_coords, state_session_id], | |
queue=False | |
) | |
upvote_btn.click( | |
lambda session_id, is_example_image: update_vote("upvote", session_id, is_example_image), | |
inputs=[state_session_id, is_example_dropdown], | |
outputs=[], | |
queue=False | |
) | |
downvote_btn.click( | |
lambda session_id, is_example_image: update_vote("downvote", session_id, is_example_image), | |
inputs=[state_session_id, is_example_dropdown], | |
outputs=[], | |
queue=False | |
) | |
return demo | |
if __name__ == "__main__": | |
demo = build_demo(embed_mode=False) | |
demo.queue(api_open=False).launch( | |
server_name="0.0.0.0", | |
server_port=7860, | |
ssr_mode=False, | |
debug=True, | |
) |