Spaces:
Running
on
A10G
Running
on
A10G
# Copyright (c) Facebook, Inc. and its affiliates. | |
import math | |
from functools import lru_cache | |
import torch | |
from torch import nn | |
from torch.autograd import Function | |
from torch.autograd.function import once_differentiable | |
from torch.nn.modules.utils import _pair | |
from torchvision.ops import deform_conv2d | |
from annotator.oneformer.detectron2.utils.develop import create_dummy_class, create_dummy_func | |
from .wrappers import _NewEmptyTensorOp | |
class _DeformConv(Function): | |
def forward( | |
ctx, | |
input, | |
offset, | |
weight, | |
stride=1, | |
padding=0, | |
dilation=1, | |
groups=1, | |
deformable_groups=1, | |
im2col_step=64, | |
): | |
if input is not None and input.dim() != 4: | |
raise ValueError( | |
"Expected 4D tensor as input, got {}D tensor instead.".format(input.dim()) | |
) | |
ctx.stride = _pair(stride) | |
ctx.padding = _pair(padding) | |
ctx.dilation = _pair(dilation) | |
ctx.groups = groups | |
ctx.deformable_groups = deformable_groups | |
ctx.im2col_step = im2col_step | |
ctx.save_for_backward(input, offset, weight) | |
output = input.new_empty( | |
_DeformConv._output_size(input, weight, ctx.padding, ctx.dilation, ctx.stride) | |
) | |
ctx.bufs_ = [input.new_empty(0), input.new_empty(0)] # columns, ones | |
if not input.is_cuda: | |
# TODO: let torchvision support full features of our deformconv. | |
if deformable_groups != 1: | |
raise NotImplementedError( | |
"Deformable Conv with deformable_groups != 1 is not supported on CPUs!" | |
) | |
return deform_conv2d( | |
input, offset, weight, stride=stride, padding=padding, dilation=dilation | |
) | |
else: | |
cur_im2col_step = _DeformConv._cal_im2col_step(input.shape[0], ctx.im2col_step) | |
assert (input.shape[0] % cur_im2col_step) == 0, "im2col step must divide batchsize" | |
_C.deform_conv_forward( | |
input, | |
weight, | |
offset, | |
output, | |
ctx.bufs_[0], | |
ctx.bufs_[1], | |
weight.size(3), | |
weight.size(2), | |
ctx.stride[1], | |
ctx.stride[0], | |
ctx.padding[1], | |
ctx.padding[0], | |
ctx.dilation[1], | |
ctx.dilation[0], | |
ctx.groups, | |
ctx.deformable_groups, | |
cur_im2col_step, | |
) | |
return output | |
def backward(ctx, grad_output): | |
input, offset, weight = ctx.saved_tensors | |
grad_input = grad_offset = grad_weight = None | |
if not grad_output.is_cuda: | |
raise NotImplementedError("Deformable Conv is not supported on CPUs!") | |
else: | |
cur_im2col_step = _DeformConv._cal_im2col_step(input.shape[0], ctx.im2col_step) | |
assert (input.shape[0] % cur_im2col_step) == 0, "im2col step must divide batchsize" | |
if ctx.needs_input_grad[0] or ctx.needs_input_grad[1]: | |
grad_input = torch.zeros_like(input) | |
grad_offset = torch.zeros_like(offset) | |
_C.deform_conv_backward_input( | |
input, | |
offset, | |
grad_output, | |
grad_input, | |
grad_offset, | |
weight, | |
ctx.bufs_[0], | |
weight.size(3), | |
weight.size(2), | |
ctx.stride[1], | |
ctx.stride[0], | |
ctx.padding[1], | |
ctx.padding[0], | |
ctx.dilation[1], | |
ctx.dilation[0], | |
ctx.groups, | |
ctx.deformable_groups, | |
cur_im2col_step, | |
) | |
if ctx.needs_input_grad[2]: | |
grad_weight = torch.zeros_like(weight) | |
_C.deform_conv_backward_filter( | |
input, | |
offset, | |
grad_output, | |
grad_weight, | |
ctx.bufs_[0], | |
ctx.bufs_[1], | |
weight.size(3), | |
weight.size(2), | |
ctx.stride[1], | |
ctx.stride[0], | |
ctx.padding[1], | |
ctx.padding[0], | |
ctx.dilation[1], | |
ctx.dilation[0], | |
ctx.groups, | |
ctx.deformable_groups, | |
1, | |
cur_im2col_step, | |
) | |
return grad_input, grad_offset, grad_weight, None, None, None, None, None, None | |
def _output_size(input, weight, padding, dilation, stride): | |
channels = weight.size(0) | |
output_size = (input.size(0), channels) | |
for d in range(input.dim() - 2): | |
in_size = input.size(d + 2) | |
pad = padding[d] | |
kernel = dilation[d] * (weight.size(d + 2) - 1) + 1 | |
stride_ = stride[d] | |
output_size += ((in_size + (2 * pad) - kernel) // stride_ + 1,) | |
if not all(map(lambda s: s > 0, output_size)): | |
raise ValueError( | |
"convolution input is too small (output would be {})".format( | |
"x".join(map(str, output_size)) | |
) | |
) | |
return output_size | |
def _cal_im2col_step(input_size, default_size): | |
""" | |
Calculate proper im2col step size, which should be divisible by input_size and not larger | |
than prefer_size. Meanwhile the step size should be as large as possible to be more | |
efficient. So we choose the largest one among all divisors of input_size which are smaller | |
than prefer_size. | |
:param input_size: input batch size . | |
:param default_size: default preferred im2col step size. | |
:return: the largest proper step size. | |
""" | |
if input_size <= default_size: | |
return input_size | |
best_step = 1 | |
for step in range(2, min(int(math.sqrt(input_size)) + 1, default_size)): | |
if input_size % step == 0: | |
if input_size // step <= default_size: | |
return input_size // step | |
best_step = step | |
return best_step | |
class _ModulatedDeformConv(Function): | |
def forward( | |
ctx, | |
input, | |
offset, | |
mask, | |
weight, | |
bias=None, | |
stride=1, | |
padding=0, | |
dilation=1, | |
groups=1, | |
deformable_groups=1, | |
): | |
ctx.stride = stride | |
ctx.padding = padding | |
ctx.dilation = dilation | |
ctx.groups = groups | |
ctx.deformable_groups = deformable_groups | |
ctx.with_bias = bias is not None | |
if not ctx.with_bias: | |
bias = input.new_empty(1) # fake tensor | |
if not input.is_cuda: | |
raise NotImplementedError("Deformable Conv is not supported on CPUs!") | |
if ( | |
weight.requires_grad | |
or mask.requires_grad | |
or offset.requires_grad | |
or input.requires_grad | |
): | |
ctx.save_for_backward(input, offset, mask, weight, bias) | |
output = input.new_empty(_ModulatedDeformConv._infer_shape(ctx, input, weight)) | |
ctx._bufs = [input.new_empty(0), input.new_empty(0)] | |
_C.modulated_deform_conv_forward( | |
input, | |
weight, | |
bias, | |
ctx._bufs[0], | |
offset, | |
mask, | |
output, | |
ctx._bufs[1], | |
weight.shape[2], | |
weight.shape[3], | |
ctx.stride, | |
ctx.stride, | |
ctx.padding, | |
ctx.padding, | |
ctx.dilation, | |
ctx.dilation, | |
ctx.groups, | |
ctx.deformable_groups, | |
ctx.with_bias, | |
) | |
return output | |
def backward(ctx, grad_output): | |
if not grad_output.is_cuda: | |
raise NotImplementedError("Deformable Conv is not supported on CPUs!") | |
input, offset, mask, weight, bias = ctx.saved_tensors | |
grad_input = torch.zeros_like(input) | |
grad_offset = torch.zeros_like(offset) | |
grad_mask = torch.zeros_like(mask) | |
grad_weight = torch.zeros_like(weight) | |
grad_bias = torch.zeros_like(bias) | |
_C.modulated_deform_conv_backward( | |
input, | |
weight, | |
bias, | |
ctx._bufs[0], | |
offset, | |
mask, | |
ctx._bufs[1], | |
grad_input, | |
grad_weight, | |
grad_bias, | |
grad_offset, | |
grad_mask, | |
grad_output, | |
weight.shape[2], | |
weight.shape[3], | |
ctx.stride, | |
ctx.stride, | |
ctx.padding, | |
ctx.padding, | |
ctx.dilation, | |
ctx.dilation, | |
ctx.groups, | |
ctx.deformable_groups, | |
ctx.with_bias, | |
) | |
if not ctx.with_bias: | |
grad_bias = None | |
return ( | |
grad_input, | |
grad_offset, | |
grad_mask, | |
grad_weight, | |
grad_bias, | |
None, | |
None, | |
None, | |
None, | |
None, | |
) | |
def _infer_shape(ctx, input, weight): | |
n = input.size(0) | |
channels_out = weight.size(0) | |
height, width = input.shape[2:4] | |
kernel_h, kernel_w = weight.shape[2:4] | |
height_out = ( | |
height + 2 * ctx.padding - (ctx.dilation * (kernel_h - 1) + 1) | |
) // ctx.stride + 1 | |
width_out = ( | |
width + 2 * ctx.padding - (ctx.dilation * (kernel_w - 1) + 1) | |
) // ctx.stride + 1 | |
return n, channels_out, height_out, width_out | |
deform_conv = _DeformConv.apply | |
modulated_deform_conv = _ModulatedDeformConv.apply | |
class DeformConv(nn.Module): | |
def __init__( | |
self, | |
in_channels, | |
out_channels, | |
kernel_size, | |
stride=1, | |
padding=0, | |
dilation=1, | |
groups=1, | |
deformable_groups=1, | |
bias=False, | |
norm=None, | |
activation=None, | |
): | |
""" | |
Deformable convolution from :paper:`deformconv`. | |
Arguments are similar to :class:`Conv2D`. Extra arguments: | |
Args: | |
deformable_groups (int): number of groups used in deformable convolution. | |
norm (nn.Module, optional): a normalization layer | |
activation (callable(Tensor) -> Tensor): a callable activation function | |
""" | |
super(DeformConv, self).__init__() | |
assert not bias | |
assert in_channels % groups == 0, "in_channels {} cannot be divisible by groups {}".format( | |
in_channels, groups | |
) | |
assert ( | |
out_channels % groups == 0 | |
), "out_channels {} cannot be divisible by groups {}".format(out_channels, groups) | |
self.in_channels = in_channels | |
self.out_channels = out_channels | |
self.kernel_size = _pair(kernel_size) | |
self.stride = _pair(stride) | |
self.padding = _pair(padding) | |
self.dilation = _pair(dilation) | |
self.groups = groups | |
self.deformable_groups = deformable_groups | |
self.norm = norm | |
self.activation = activation | |
self.weight = nn.Parameter( | |
torch.Tensor(out_channels, in_channels // self.groups, *self.kernel_size) | |
) | |
self.bias = None | |
nn.init.kaiming_uniform_(self.weight, nonlinearity="relu") | |
def forward(self, x, offset): | |
if x.numel() == 0: | |
# When input is empty, we want to return a empty tensor with "correct" shape, | |
# So that the following operations will not panic | |
# if they check for the shape of the tensor. | |
# This computes the height and width of the output tensor | |
output_shape = [ | |
(i + 2 * p - (di * (k - 1) + 1)) // s + 1 | |
for i, p, di, k, s in zip( | |
x.shape[-2:], self.padding, self.dilation, self.kernel_size, self.stride | |
) | |
] | |
output_shape = [x.shape[0], self.weight.shape[0]] + output_shape | |
return _NewEmptyTensorOp.apply(x, output_shape) | |
x = deform_conv( | |
x, | |
offset, | |
self.weight, | |
self.stride, | |
self.padding, | |
self.dilation, | |
self.groups, | |
self.deformable_groups, | |
) | |
if self.norm is not None: | |
x = self.norm(x) | |
if self.activation is not None: | |
x = self.activation(x) | |
return x | |
def extra_repr(self): | |
tmpstr = "in_channels=" + str(self.in_channels) | |
tmpstr += ", out_channels=" + str(self.out_channels) | |
tmpstr += ", kernel_size=" + str(self.kernel_size) | |
tmpstr += ", stride=" + str(self.stride) | |
tmpstr += ", padding=" + str(self.padding) | |
tmpstr += ", dilation=" + str(self.dilation) | |
tmpstr += ", groups=" + str(self.groups) | |
tmpstr += ", deformable_groups=" + str(self.deformable_groups) | |
tmpstr += ", bias=False" | |
return tmpstr | |
class ModulatedDeformConv(nn.Module): | |
def __init__( | |
self, | |
in_channels, | |
out_channels, | |
kernel_size, | |
stride=1, | |
padding=0, | |
dilation=1, | |
groups=1, | |
deformable_groups=1, | |
bias=True, | |
norm=None, | |
activation=None, | |
): | |
""" | |
Modulated deformable convolution from :paper:`deformconv2`. | |
Arguments are similar to :class:`Conv2D`. Extra arguments: | |
Args: | |
deformable_groups (int): number of groups used in deformable convolution. | |
norm (nn.Module, optional): a normalization layer | |
activation (callable(Tensor) -> Tensor): a callable activation function | |
""" | |
super(ModulatedDeformConv, self).__init__() | |
self.in_channels = in_channels | |
self.out_channels = out_channels | |
self.kernel_size = _pair(kernel_size) | |
self.stride = stride | |
self.padding = padding | |
self.dilation = dilation | |
self.groups = groups | |
self.deformable_groups = deformable_groups | |
self.with_bias = bias | |
self.norm = norm | |
self.activation = activation | |
self.weight = nn.Parameter( | |
torch.Tensor(out_channels, in_channels // groups, *self.kernel_size) | |
) | |
if bias: | |
self.bias = nn.Parameter(torch.Tensor(out_channels)) | |
else: | |
self.bias = None | |
nn.init.kaiming_uniform_(self.weight, nonlinearity="relu") | |
if self.bias is not None: | |
nn.init.constant_(self.bias, 0) | |
def forward(self, x, offset, mask): | |
if x.numel() == 0: | |
output_shape = [ | |
(i + 2 * p - (di * (k - 1) + 1)) // s + 1 | |
for i, p, di, k, s in zip( | |
x.shape[-2:], self.padding, self.dilation, self.kernel_size, self.stride | |
) | |
] | |
output_shape = [x.shape[0], self.weight.shape[0]] + output_shape | |
return _NewEmptyTensorOp.apply(x, output_shape) | |
x = modulated_deform_conv( | |
x, | |
offset, | |
mask, | |
self.weight, | |
self.bias, | |
self.stride, | |
self.padding, | |
self.dilation, | |
self.groups, | |
self.deformable_groups, | |
) | |
if self.norm is not None: | |
x = self.norm(x) | |
if self.activation is not None: | |
x = self.activation(x) | |
return x | |
def extra_repr(self): | |
tmpstr = "in_channels=" + str(self.in_channels) | |
tmpstr += ", out_channels=" + str(self.out_channels) | |
tmpstr += ", kernel_size=" + str(self.kernel_size) | |
tmpstr += ", stride=" + str(self.stride) | |
tmpstr += ", padding=" + str(self.padding) | |
tmpstr += ", dilation=" + str(self.dilation) | |
tmpstr += ", groups=" + str(self.groups) | |
tmpstr += ", deformable_groups=" + str(self.deformable_groups) | |
tmpstr += ", bias=" + str(self.with_bias) | |
return tmpstr | |
try: | |
from annotator.oneformer.detectron2 import _C | |
except ImportError: | |
# TODO: register ops natively so there is no need to import _C. | |
_msg = "detectron2 is not compiled successfully, please build following the instructions!" | |
_args = ("detectron2._C", _msg) | |
DeformConv = create_dummy_class("DeformConv", *_args) | |
ModulatedDeformConv = create_dummy_class("ModulatedDeformConv", *_args) | |
deform_conv = create_dummy_func("deform_conv", *_args) | |
modulated_deform_conv = create_dummy_func("modulated_deform_conv", *_args) | |