Spaces:
Running
on
A10G
Running
on
A10G
import os | |
import torch | |
import numpy as np | |
from einops import rearrange | |
from annotator.pidinet.model import pidinet | |
from annotator.util import safe_step | |
from annotator.annotator_path import models_path, DEVICE | |
import safetensors.torch | |
# from modules.safe import unsafe_torch_load | |
def get_state_dict(d): | |
return d.get("state_dict", d) | |
def load_state_dict(ckpt_path, location="cpu"): | |
_, extension = os.path.splitext(ckpt_path) | |
if extension.lower() == ".safetensors": | |
state_dict = safetensors.torch.load_file(ckpt_path, device=location) | |
else: | |
state_dict = torch.load(ckpt_path, map_location=torch.device(location)) | |
state_dict = get_state_dict(state_dict) | |
return state_dict | |
netNetwork = None | |
remote_model_path = "https://huggingface.co/lllyasviel/Annotators/resolve/main/table5_pidinet.pth" | |
modeldir = os.path.join(models_path, "pidinet") | |
old_modeldir = os.path.dirname(os.path.realpath(__file__)) | |
def apply_pidinet(input_image, is_safe=False, apply_fliter=False): | |
global netNetwork | |
if netNetwork is None: | |
modelpath = os.path.join(modeldir, "table5_pidinet.pth") | |
old_modelpath = os.path.join(old_modeldir, "table5_pidinet.pth") | |
if os.path.exists(old_modelpath): | |
modelpath = old_modelpath | |
elif not os.path.exists(modelpath): | |
from basicsr.utils.download_util import load_file_from_url | |
load_file_from_url(remote_model_path, model_dir=modeldir) | |
netNetwork = pidinet() | |
ckp = load_state_dict(modelpath) | |
netNetwork.load_state_dict({k.replace('module.',''):v for k, v in ckp.items()}) | |
netNetwork = netNetwork.to(DEVICE) | |
netNetwork.eval() | |
assert input_image.ndim == 3 | |
input_image = input_image[:, :, ::-1].copy() | |
with torch.no_grad(): | |
image_pidi = torch.from_numpy(input_image).float().to(DEVICE) | |
image_pidi = image_pidi / 255.0 | |
image_pidi = rearrange(image_pidi, 'h w c -> 1 c h w') | |
edge = netNetwork(image_pidi)[-1] | |
edge = edge.cpu().numpy() | |
if apply_fliter: | |
edge = edge > 0.5 | |
if is_safe: | |
edge = safe_step(edge) | |
edge = (edge * 255.0).clip(0, 255).astype(np.uint8) | |
return edge[0][0] | |
def unload_pid_model(): | |
global netNetwork | |
if netNetwork is not None: | |
netNetwork.cpu() |